matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikstochastisch unabhängig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - stochastisch unabhängig
stochastisch unabhängig < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stochastisch unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Fr 03.07.2009
Autor: stochastikniete

Aufgabe
ZUfallsvariable X ist Laplace-verteilt auf der Menge (-3,-2,-1,0,1,2,3), sind X und X² stochastisch unabhängig?

X ist Laplace-verteilt, bedeutet P(X=k)=1/7 für jedes k€(-1,-2,-3,0,1,2,3)

Wenn ich jetzt für X bspw alle negative Zahlen nehme, also (-1,-2,-3) bedeutet das, dass P(X)=3/7

heißt das für X² ((-1)²,(-2)²,(-3)²) also (1,4,9) und da nur die 1 in der obigen Menge enthalten ist P(X²)=1/7?

und für die stochastische Unabhängigkeit folgt dann
[mm] P(X)*P(Y)=P(X\capY) [/mm]
also 3/7*1/7=0  ist keine wahre Aussage, daher nicht stochastisch unabhängig?



        
Bezug
stochastisch unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Fr 03.07.2009
Autor: Merle23


> ZUfallsvariable X ist Laplace-verteilt auf der Menge
> (-3,-2,-1,0,1,2,3), sind X und X² stochastisch
> unabhängig?

>  X ist Laplace-verteilt, bedeutet P(X=k)=1/7 für jedes
> k [mm] \in \{-1,-2,-3,0,1,2,3\} [/mm]
>  

Also ist X einfach die Gleichverteilung auf der Menge [mm] \{-3, ..., 3\}. [/mm]

> Wenn ich jetzt für X bspw alle negative Zahlen nehme, also
> (-1,-2,-3) bedeutet das, dass P(X)=3/7

Das ist falsch ausgedrückt.
Du meinst [mm]P(X \in \{-1, -2, -3\}) = 3/7[/mm].

>  
> heißt das für X² ((-1)²,(-2)²,(-3)²) also (1,4,9) und
> da nur die 1 in der obigen Menge enthalten ist P(X²)=1/7?

Du wirfst hier die Zufallsvariable X durcheinander mit der Wahrscheinlichkeit von Ereignissen.
X ist definiert auf einem Ergebnissraum [mm] \Omega [/mm] und bildet in die reellen Zahlen ab.
[mm] X^2 [/mm] ist auch auf [mm] \Omega [/mm] definiert und bildet so ab: [mm]X^2(\omega) = (X(\omega))^2[/mm].

Und jetzt kannst du Wahrscheinlichkeiten [mm] P(X^2 \in [/mm] B), mit B eine Borel-Menge von [mm] \IR, [/mm] betrachten.

>  
> und für die stochastische Unabhängigkeit folgt dann
> [mm]P(X)*P(Y)=P(X\capY)[/mm]
>  also 3/7*1/7=0  ist keine wahre Aussage, daher nicht
> stochastisch unabhängig?

Das ist dementsprechend auch Murks.

Bezug
                
Bezug
stochastisch unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 Sa 04.07.2009
Autor: stochastikniete

mh.. das versteh ich nicht so ganz... also ist X kein Zufallsereignis wie
X=alle neativen Zahlen (der vorgegebenen Menge)?

wenn ich die Menge (-3,-2,-1,0,1,2,3) habe, was ist dann X(w)?
für w kan ich ja jede Zahl der obigen Menge einsetzen...
X(-1)=-1?

und X²=(X(-1))²=1?

aber wie berechne ich dann die Wahrscheinlichkeiten von X und X²?

Bezug
        
Bezug
stochastisch unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Sa 04.07.2009
Autor: luis52

Moin,

da bin ich wieder. ;-)

$X_$ ist eine Zufallsvariable, die "sauber" in der Form [mm] $X:\Omega\to\IR$ [/mm] geschrieben werden kann. Dabei bleibt die Ergebnismenge [mm] $\Omega$ [/mm] im Hintergrund, nur weiss man, dass  fuer die Mengen

[mm] $(X=i):=\{\omega\,\mid\,\omega\in\Omega\,,X(\omega)=i\}\subset\Omega [/mm]

gilt $P(X=i)=1/7$ fuer $i=-3,-2,-1,0,1,2,3$.

Die Bildmenge von $X_$ ist also [mm] $\{-3,-2,-1,0,1,2,3\}$, [/mm] die von [mm] $X^2$ [/mm] ist [mm] $\{0,1,4,9\}$, [/mm] und es gilt [mm] $P(X^2=0)=P(X=0)=1/7$, $P(X^2=1)=P(X=-1)+P(X=1)=2/7$, [/mm] usw.

Willst du zeigen, dass $X_$ und [mm] $X^2$ [/mm] stochastisch unabhaengig sind, so muss die Identitaet [mm] $P(X=u,X^2=v)=P(X=u)P(X^2=v)$ [/mm] fuer *alle* [mm] $u\in\{-3,-2,-1,0,1,2,3\}$ [/mm]  und *alle* [mm] $v\in\{0,1,4,9\}$ [/mm] gelten. Willst du zeigen, dass $X_$ und [mm] $X^2$ [/mm] nicht stochastisch unabhaengig sind, so muss die Identitaet [mm] $P(X=u,X^2=v)=P(X=u)P(X^2=v)$ [/mm] fuer ein [mm] $u\in\{-3,-2,-1,0,1,2,3\}$ [/mm]  und ein [mm] $v\in\{0,1,4,9\}$ [/mm] verletzt sein.



vg Luis


Bezug
                
Bezug
stochastisch unabhängig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:45 Mi 08.07.2009
Autor: stochastikniete

okay, danke!
vg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]