stetigkeit von funktionen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:52 Mi 29.12.2004 | Autor: | junkx |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
hi, folgende frage:
es geht darum stetigkeit von funktionen nachzuweisen. kann ich aus
[mm] \limes_{x\rightarrow a+} [/mm] f(x) = [mm] \limes_{x\rightarrow a-} [/mm] f(x)= f(a) schlussfolgenern, dass die funktion für alle a aus dem definitionsbereich stetíg ist, sobald ich jeweils eine folge [mm] x_{n} [/mm] mit [mm] \limes_{n\rightarrow\infty} x_{n} [/mm] = a von rechts bzw von links finde? oder wie weist man stetigkeit sonst nach?
danke schonmal. hoffe mir kann jemand helfen
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:28 Do 30.12.2004 | Autor: | andreas |
hi
ich finde deine frage etwas unkonkret, bzw den satz in dem du die frage stellst zu lang. ich zumindest kann so nicht genau spezifizieren, was genau du fragen willst:
> es geht darum stetigkeit von funktionen nachzuweisen. kann
> ich aus
> [mm]\limes_{x\rightarrow a+}[/mm] f(x) = [mm]\limes_{x\rightarrow a-}[/mm]
> f(x)= f(a) schlussfolgenern, dass die funktion für alle a
> aus dem definitionsbereich stetíg ist
wenn das deine frage sein sollte, kann ich diese mit ja beantworten, insofern diese bedingung ([mm]\limes_{x\rightarrow a+} f(x) = \limes_{x\rightarrow a-} f(x)= f(a) [/mm]) für alle $a$ des definitionsbereichs gilt.
> sobald ich jeweils eine folge [mm]x_{n}[/mm] mit [mm]\limes_{n\rightarrow\infty} x_{n}[/mm] = a
> von rechts bzw von links finde?
falls du die stetigkeit an nur einer folge festmachen willst reicht das leider nicht. betrachte z.b. die funktion [m] f: \mathbb{R} \longrightarrow \mathbb{R} [/m] mit [m] f(x) = \begin{cases} 0 & \textrm{falls } x \in \mathbb{Q} \\ 1 & \textrm{falls } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} [/m]
dann gilt [m] f(0) = 0 [/m] und man findet folgen (z.b. [m] \left( \frac{1}{n} \right)_{n \in \mathbb{n}} [/m] und [m] \left( - \frac{1}{n} \right)_{n \in \mathbb{N}} [/m] die von recht bzw. links gegen $0$ konvergieren und für die offensichtlich gilt, dass [m] \lim_{n \to \infty} f\left( \frac{1}{n} \right) = \lim_{n \to \infty} f\left( - \frac{1}{n} \right) = f(0) = 0 [/m] gilt. jedoch kann man zeigen, dass $f$ in keinem punkt stetig ist.
dieses kriterium ist in der regel eher geschickt um nachzuweisen, dass eine funktion nicht stetig ist, denn findet man eine folge die gegen [mm] $x_0$ [/mm] konvergiern, deren bilder jedoch nicht gegen [mm] $f(x_0)$ [/mm] konvergiern, so kann $f$ nicht stetig in [mm] $x_0$ [/mm] sein! in obigem beispiel bietet sich z.b. die folge [m] \left(\frac{\sqrt{2}}{n} \right)_{n \in \mathbb{N}} [/m] an!
> oder wie weist man
> stetigkeit sonst nach?
meist erübrigt sich das, da man für ein paar funktionen auf recht einfachem weg die stetigkeit zeigen kann und dann mit summen-, produkt-, kompositions-argumenten etc. eine reisige menge an funktionen erschlagen kann. an kritischen punkten bietet sich auch häufig "die" definition der stetigkeit, also
[m] f \textrm{ stetig in } x_0 \; \Longleftrightarrow \; \forall \, \varepsilon > 0 \; \exists \, \delta > 0 \; \forall \, x \in u_\delta(x_0) : d(f(x_0), f(x)) < \varepsilon [/m]
an.
ich hoffe das hilft erstmal weiter, sonst frage (möglichst konkret) nach.
grüße
andreas
|
|
|
|