matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisstetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - stetigkeit
stetigkeit < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:47 Mi 17.05.2006
Autor: Phys

in unserem Aufgabenblatt ist folgende (meiner meinung nach:unlösbare Aufgabe;-) für die ich nichtmal nen Lösungsansatz habe:
Sei I=[0,1] und V= [mm] C^{1}(I) [/mm] versehen mit der Norm:
[mm] \parallel [/mm] f [mm] \parallel [/mm] = [mm] \max_{x\in I}\wurzel{ |f(x) |^2+|f'(x)|^2} [/mm]
und [mm] V_{0} [/mm] der Raum [mm] C^1(I) [/mm] versehen mit der Norm [mm] \parallel [/mm] f [mm] \parallel_{ \infty}= \max_{x\in I}|f(x)|.Sei [/mm] W=C(I) mit der Norm [mm] \parallel [/mm] f [mm] \parallel_{ \infty}= \max_{x\in I}|f(x)| [/mm] überprüfen sie die Stetigkeit von [mm] D_{1}:V \to [/mm] W,f [mm] \to [/mm] f'und [mm] D_{2}:V_{0} \to [/mm] W,f [mm] \to [/mm] f' und dann soll noch gegebenenfalls  [mm] \parallel D_{1} \parallel [/mm] bestimmt werden. Ich wäre für jede Hilfe sehr dankbar, da ich momentan zeimlich auf dem schlauch steh(also keinen Ansatz habe)

        
Bezug
stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Do 18.05.2006
Autor: MatthiasKr

Hallo phys,

erstmal: ruhig blut! denn von unlösbarkeit ist diese aufgabe meilenweit entfernt.... ;-)

also, du hast hier verschiedene funktionenräume mit verschiedenen normen gegeben und sollst prüfen, ob der ableitungsoperator jeweils stetig ist.

Zunächst mal ist der Abl.operator ja linear. Wie kann man also die stetigkeit charakterisieren? hat man einen linearen Op. [mm] $D:X\to [/mm] Y$ dann ist dieser gd. stetig, wenn es eine konstante $C$ gibt mit [mm] $\|Dx\|_Y\le C\cdot \|x\|_X,\forall x\in [/mm] X$. Die kleinste solche Konstante $C$ nennt man dann die Operatornorm [mm] $\|D\|$ [/mm] des Operators.

Nehmen wir also mal [mm] $D_1:V\to [/mm] W, [mm] f\mapsto [/mm] f'$. Du musst prüfen, ob du die  [mm] $C^0$-Norm, [/mm] also die maximum-norm, der ableitung durch die [mm] $C^1$-Norm [/mm] der funktion abschätzen kannst. es gilt doch aber

[mm] $\|f'\|_\infty=\max_{x \in I}|f'(x)|\le \max_{x \in I}\wurzel{ |f(x) |^2+|f'(x)|^2}=\|f\|_V$ [/mm]

[mm] $D_1$ [/mm] ist also stetig! Und [mm] $\|D_1\|$ [/mm] haben wir nebenbei auch schon bestimmt, siehst du das? [mm] $D_2$ [/mm] kannst du ja jetzt selbst mal untersuchen.

Gruß
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]