matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitstetige summe funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - stetige summe funktionen
stetige summe funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetige summe funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Fr 13.05.2011
Autor: Kueken

Hi!

Ich hab da mal ne Frage:

Wenn ich eine komplexe Funktion habe (z.B.: x -> cos(x) + i sin(x) und ich weiß ja, dass e hoch x stetig ist.Also dass die komplette Summe stetig ist, wie kann ich dann darauf schließen, dass cos(x) und sin(x) stetig sind (ohne es vorher zu wissen)? Kann man so darauf überhaupt schließen?

LG und Vielen Dank
Kerstin

        
Bezug
stetige summe funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 Fr 13.05.2011
Autor: Kueken

Nachtrag: Ich hab ein bissl formal geschludert... Aber ich hoffe ihr versteht was ich meine. Wenn irgendwo was elementares fehlt, wäre ein Kommentar toll, damit ich weiß wo ich nicht verständlich bin.

Dankeschöön :)

Bezug
        
Bezug
stetige summe funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Sa 14.05.2011
Autor: fred97

1. es ist [mm] $e^{ix}=cos(x)+isin(x)$ [/mm]

2. Nimm an, du hast eine Funktion [mm] $f:\IR \to \IC$ [/mm]  mit u=Re(f) und v= Im(f)

Es gilt:   |u(x)-u(y)| [mm] \le [/mm] |f(x)-f(x)| und |v(x)-v(y)| [mm] \le [/mm] |f(x)-f(x)|

Ist also f stetig, so folgt die Stetigkeit von u und v.

FRED

Bezug
                
Bezug
stetige summe funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 So 15.05.2011
Autor: Kueken

Hallo Fred,

Danke Dir =) Jetzt ist es klar.

LG
Kerstin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]