matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenstetige Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - stetige Funktionen
stetige Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetige Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Mo 08.01.2007
Autor: Ron85

Hallo Matheraum!

Wie zeige ich, dass es auf IR stetige Funktionen f,g gibt mit f(0)=g(0)=0
und f(x)g(x)=x für alle x € IR und gibt es diffrenzierbare Funktionen mit den gleichen Eigenschaften.

Ich wäre euch sehr dankbar, wenn Ihr mir helfen könntet.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
stetige Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Mo 08.01.2007
Autor: dormant

Hi!

Das einfachste wäre einfach zwei Funktionen f und g anzugeben, die die gewünschten Eigenschaften besitzen. Ich kann dir jetzt schon verraten, dass es sehr einfache Funktionen dieser Art gibt. Es könnte hilfreich sein zu wissen, dass wenn zwei Funktionen f und g diffbar sind, so sind es die Kompositionen (fg, f(g), [mm] f\pm [/mm] g, f/g (solange g(x) ungleich 0 für alle x)) auch.

Gruß,
dormant

Bezug
                
Bezug
stetige Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Mo 08.01.2007
Autor: Ron85

Ok Danke.


Dann kann ich doch die Funktionen [mm] f(x)=g(x)=\wurzel{x} [/mm] nehmen oder?
Wie zeige ich deren Stetigkeit?


Bezug
                        
Bezug
stetige Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Mo 08.01.2007
Autor: dormant

Hi!

> Dann kann ich doch die Funktionen [mm]f(x)=g(x)=\wurzel{x}[/mm]
> nehmen oder?

Nein, aber ist ein guter erster Versuch. Du brauchst ja Funktionen, die auf ganz [mm] \IR [/mm] stetig sind, die Wurzelfunktion ist aber auf [mm] \IR_{-} [/mm] nicht einmal definiert, geschwiege stetig. Es geht noch einfacher und die Richtung stimmt - geeignete Polynome werden die gewünschten Eigenschaften besitzen.

Gruß,
dormant

Bezug
                                
Bezug
stetige Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Mo 08.01.2007
Autor: Ron85

Ja stimmt Du hast Recht.

Ich kann aber die Funktionen [mm] f(x)=x^2 [/mm] und g(x)=1/x nehmen.
Die sind ja auf ganz IR stetig.

oder welche Funktionen würdest Du mir vorschlagen?

Bezug
                                        
Bezug
stetige Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Mo 08.01.2007
Autor: chrisno

g(0) = ? auf jeden fall nicht Null. Andere suchen.

Bezug
                                        
Bezug
stetige Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:15 Di 09.01.2007
Autor: dormant

Hi!

1/x ist auch nicht auf ganz R definiert. Mit [mm] x^{2} [/mm] bist du fast am Ziel - wenn du noch ein bisschen an der Potenz rumschraubst, musst du es rauskriegen. Für g könntest du dir eine konstante Funktion überlegen. Oder sogar für beide, g und f.

Gurß,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]