matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitstetig hebbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - stetig hebbar
stetig hebbar < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetig hebbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Do 04.09.2014
Autor: geigenzaehler

Aufgabe
Für welche k aus IN ist f in x=0 stetig?

f: IR->IR

[mm] $f(x)=x^k*sin(1/x)$ [/mm] für [mm] $x\not=0$ [/mm]
f(x)=0 für x=0

ICh wollte das mit dem Folgenkriterium machen:

sei [mm] §x_{n}=1/n§ [/mm]

1/n -> 0

Die Frage ist also:

f(1/n) -> 0 für welche k?

[mm] (1/n)^k*sin(n)->0 [/mm]

Das muss doch jetzt unter dem Aspekt n-> unendlich betrachtet werden, oder?

Für alle k geht für n-> unendlich      [mm] (1/n)^k*sin(n) [/mm] -> 0 .

Kann man das so machen? Oder wie ist es besser?

        
Bezug
stetig hebbar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Do 04.09.2014
Autor: Diophant

Hallo,

> Für welche k aus IN ist f in x=0 stetig?

>

> f: IR->IR

>

> [mm]f(x)=x^k*sin(1/x)[/mm] für [mm]x\not=0[/mm]
> f(x)=0 für x=0
> ICh wollte das mit dem Folgenkriterium machen:

>

> sei [mm]§x_{n}=1/n§[/mm]

>

> 1/n -> 0

>

> Die Frage ist also:

>

> f(1/n) -> 0 für welche k?

>

> [mm](1/n)^k*sin(n)->0[/mm]

>

> Das muss doch jetzt unter dem Aspekt n-> unendlich
> betrachtet werden, oder?

>

> Für alle k geht für n-> unendlich [mm](1/n)^k*sin(n)[/mm] ->
> 0 .

>

> Kann man das so machen? Oder wie ist es besser?

sofern du mit alle k [mm] k\ge{1} [/mm] meinst (es ist hier nicht ganz klar, wofür [mm] \IN [/mm] steht), ist das richtig. Die Vorgehensweise ist die übliche würde ich sagen.


Gruß, Diophant

Bezug
                
Bezug
stetig hebbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Do 04.09.2014
Autor: geigenzaehler

gut, danke!

Bezug
        
Bezug
stetig hebbar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Do 04.09.2014
Autor: Marcel

Hallo,

> Für welche k aus IN ist f in x=0 stetig?
>  
> f: IR->IR
>  
> [mm]f(x)=x^k*sin(1/x)[/mm] für [mm]x\not=0[/mm]
>  f(x)=0 für x=0
>  ICh wollte das mit dem Folgenkriterium machen:
>  
> sei [mm]§x_{n}=1/n§[/mm]
>  
> 1/n -> 0
>  
> Die Frage ist also:
>  
> f(1/n) -> 0 für welche k?
>  
> [mm](1/n)^k*sin(n)->0[/mm]
>
> Das muss doch jetzt unter dem Aspekt n-> unendlich
> betrachtet werden, oder?
>  
> Für alle k geht für n-> unendlich      [mm](1/n)^k*sin(n)[/mm] ->
> 0 .
>  
> Kann man das so machen? Oder wie ist es besser?

das ist noch nicht ausreichend. Du zeigst so nur, dass in NOTWENDIGER
WEISE $k [mm] \ge [/mm] 1$ gelten muss, damit [mm] $f\,$ [/mm] (besser würde man [mm] $f_k$ [/mm] schreiben)
stetig in [mm] $0\,$ [/mm] ist.
(Du zeigst also: Ist [mm] $f\,$ [/mm] stetig in [mm] $0\,,$ [/mm] so folgt $k [mm] \ge 1\,.$) [/mm]
Nicht alles, was notwendig ist, muss aber auch hinreichend sein (und die
Frage ist hier doch eher: Wenn $k [mm] \ge \text{?}\,,$ [/mm] dann folgt, dass [mm] $f\,$ [/mm] stetig
in [mm] $0\,$ [/mm] ist. Wobei ich bei der Frage auch bemängeln muss, dass sie besser
formuliert werden sollte:
    "Für genau welche $k [mm] \in \IN$ [/mm] ist [mm] $f\,$ [/mm] stetig?"
Denn das ist eigentlich gemeint, und da wollen die natürlich auch Deine
Überlegung sehen, welche Bedingung an [mm] $k\,$ [/mm] notwendig ist...

Denn oben könnte ich durchaus auch einfach antworten: Bspw. für alle
$k [mm] \ge [/mm] 10000$ ist [mm] $f\,$ [/mm] stetig (an der Stelle [mm] $0\,$)...) [/mm]

Zeige noch: Ist $k [mm] \in \IN=\IN \setminus \{0\},$ [/mm] so folgt:
Ist [mm] $(y_n)_{n \in \IN}$ [/mm] IRGENDEINE Nullfolge, so folgt auch in der Tat

    [mm] $f(y_n) \to 0\,.$ [/mm]

Gruß,
  Marcel

Bezug
        
Bezug
stetig hebbar: Antwort
Status: (Antwort) fertig Status 
Datum: 08:09 Fr 05.09.2014
Autor: fred97

Für alle x [mm] \in \IR [/mm] und alle k [mm] \in \IN: [/mm]

$$|f(x)| [mm] \le |x|^k$$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]