matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitstetig fortsetzbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - stetig fortsetzbar
stetig fortsetzbar < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetig fortsetzbar: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:47 Mo 14.12.2009
Autor: Bleistiftkauer

Aufgabe
Sei x [mm] \in [/mm] [a, b]. Eine stetige Funktion f : [a, b]\ [mm] {{x_{0}}} \to \IR [/mm] heißt stetig fortsetzbar auf [a, b], falls eine Zahl y [mm] \in \IR [/mm] existiert, sodass die Funktion
g(x) : [a, b] [mm] \to [/mm] R: x [mm] \to [/mm] f(x), wenn x /not= [mm] x_{0}, [/mm] y wenn [mm] x=x_{0} [/mm]
stetig ist.
1. Zeigen Sie, dass f genau dann stetig fortsetzbar ist, wenn [mm] \limes_{x\rightarrow\x_{0}} [/mm] f(x) = y ist.

Ich habe leider keine Ahnung, wie man das beweist.

Es scheint ja recht sinnvoll.

aber dennoch ist der beweis wohl nicht so trivial. =(

        
Bezug
stetig fortsetzbar: Antwort
Status: (Antwort) fertig Status 
Datum: 10:56 Mo 14.12.2009
Autor: fred97


1. Sei f stetig fortsetzbar. Dann ist doch obiges g stetig in [mm] x_0, [/mm] also existiert

       [mm] \limes_{x\rightarrow\x_{0}}g(x) [/mm] und = y

Frage an Dich: existiert dann auch [mm] \limes_{x\rightarrow\x_{0}}f(x) [/mm]  ?  Wenn ja,

                [mm] \limes_{x\rightarrow\x_{0}} [/mm] f(x) = ?

2. Sei [mm] \limes_{x\rightarrow\x_{0}}f(x) [/mm] =y.

Nun definiere die Funktion g wie oben in der Aufgabenstellung und zeige: g ist in [mm] x_0 [/mm] stetig

FRED

Bezug
                
Bezug
stetig fortsetzbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:02 Mo 14.12.2009
Autor: Bleistiftkauer

das war ein höchst verwirrender tipp.
vllt. kann jemand das etwas klarer formulieren!

Bezug
                        
Bezug
stetig fortsetzbar: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Mo 14.12.2009
Autor: angela.h.b.


> das war ein höchst verwirrender tipp.
>  vllt. kann jemand das etwas klarer formulieren!

Hallo,

bitte stelle Deine Frage konkreter und nimm dabei Bezug auf Freds Hinweise.


Es sind zwei Richtungen zu zeigen:

1) f ist stetig fortsetzbar  wie angegeben ==> $ [mm] \limes_{x\rightarrow x_{0}} [/mm] $ f(x) =  y$

2) Wenn $ [mm] \limes_{x\rightarrow x_{0}} [/mm] $ f(x) = y ==> man kann die Funktion stetig fortsetzen.


Was zu tun ist, hatte Dir Fred  gesagt.

Was genau hat Dich verwirrt, was verstehst Du nicht?

Wenn Du das formulierst, kommt man dem Problem sicher schon etwas näher.


Gruß v. Angela


Bezug
                        
Bezug
stetig fortsetzbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 Mo 14.12.2009
Autor: fred97


> das war ein höchst verwirrender tipp.
>  vllt. kann jemand das etwas klarer formulieren!


               Besten Dank und verschluck Dich nicht an Deinem
               Bleistift

               FRED  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]