matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikstet Verteilung gleichverteilu
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - stet Verteilung gleichverteilu
stet Verteilung gleichverteilu < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stet Verteilung gleichverteilu: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:15 Mi 03.06.2015
Autor: DerBaum

Aufgabe
Es sei $X$ eine Zufallsvariable mit der stetigen Verteilungsfunktion $F$. Zeigen Sie, dass $F(X)$ dann gleichverteilt ist auf dem Intervall $[0,1]$, d.h. [mm] $P(F(X)\leq \lambda)=\lambda$ [/mm] für alle [mm] $\lambda \in [/mm] [0,1]$.



Guten Abend zusammen,

ich bearbeite zur Zeit die oben stehende Aufgabe, stehe aber irgendwie auf dem Schlauch.
Für $F$ gilt ja $F : [mm] \mathbb{R}\to[0,1],\, [/mm] F$ monoton steigend, $F$ (rechts)steig, [mm] $\lim_{x\to-\infty}F(x)=0,\,\lim_{x\to\infty}F(x)=1$. [/mm]

Für [mm] $\lambda=1$ [/mm] is obige Gleichung ja klar. Denn dann gilt [mm] $P(F(X)\leq1)=1$, [/mm] da [mm] $F(X)\leq [/mm] 1$ für alle [mm] $x\in \mathbb{R}$. [/mm]

Außerdem gilt ja noch [mm] $F(X)(\omega)=P(X\leq\omega)$ [/mm] und damit wäre ja
[mm] $$P(F(X)\leq\lambda)=P(\{\omega\in\Omega\,|\,F(X)(\omega)\leq \lambda\})=P(\{\omega\in\Omega\,|\,P(X\leq\omega)\leq\lambda\})$$ [/mm]

Ich würde mich sehr über etwas Hilfe freuen.

Vielen Dank schon mal. Liebe Grüße
DerBaum

        
Bezug
stet Verteilung gleichverteilu: Antwort
Status: (Antwort) fertig Status 
Datum: 08:07 Mi 03.06.2015
Autor: Gonozal_IX

Hiho,

> Außerdem gilt ja noch [mm]F(X)(\omega)=P(X\leq\omega)[/mm]

nein, und da liegt dein Denkfehler.
Es sollte auch nicht [mm] $F(X)(\omega)$ [/mm] heißen.
Du hast eine Verteilungsfunktion F(x) und statt des Arguments [mm] $x\in\IR$ [/mm] steckst du nun die Zufallsvariable [mm] $X:\Omega\to \IR$ [/mm] rein.
X selbst wird an der Stelle [mm] \omega [/mm] ausgewertet, d.h. du hast [mm] $F\left(X(\omega)\right)$ [/mm]

Und demzufolge ist [mm] $F(X(\omega)) [/mm] = P(X [mm] \le X(\omega))$. [/mm]

Danach ist ja aber glücklicherweise gar nicht gefragt, sondern nach $P(F(X) [mm] \le \lambda)$ [/mm]

Geh der Einfachheit halber erst mal davon aus, dass F(x) streng monoton wachsend ist, dann kannst du ohne Probleme [mm] $F^{-1}$ [/mm] bilden.
Dann bekommst du eine Idee, wie es läuft.

Ist F(x) nur monoton, kann man zumindest noch das []Quantil bilden, das ist aber letztendlich das gleich.

Sauber aufschreiben, fertig.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]