matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweisestarke vollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Induktionsbeweise" - starke vollständige Induktion
starke vollständige Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

starke vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:08 Mi 19.12.2018
Autor: rubi

Hallo zusammen,

ich habe eine Frage bzgl. des Unterschieds zwischen einer vollständigen Induktion und einer starken vollständigen Induktion.
Ist es korrekt, dass man
1.) bei der vollständigen Induktion im Induktionsschritt lediglich voraussetzt, dass A(n) für ein n [mm] \in \IN [/mm] korrekt ist und daraus folgert, dass A(n+1) auch korrekt ist ?  
2.) bei der starken vollständigen Induktion im Induktionsschritt voraussetzt, dass A(n) für alle n [mm] \le n_0 [/mm] korrekt ist und daraus folgert, dass A(n+1) auch korrekt ist ?

Ich verstehe dies so, dass man bei der starken vollständigen Induktion sozusagen mehr Voraussetzungen hat als bei der vollständigen Induktion.
Ist dies so richtig ?

Ich habe zur starken vollständigen Induktion ein Beispiel zur Primfaktorzerlegung gefunden (Zeige, dass sich jede natürliche Zahl in Primfaktoren zerlegen lässt).
Gibt es hier noch weitere Beispiele ?

Die "üblichen" Induktions-Beweisaufgaben lassen sich m.E. mit vollständiger Induktion lösen.
Ist dies so korrekt ?

Danke für eure Antworten.

Viele Grüße
Rubi

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
starke vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:47 Mi 19.12.2018
Autor: fred97


> Hallo zusammen,
>
> ich habe eine Frage bzgl. des Unterschieds zwischen einer
> vollständigen Induktion und einer starken vollständigen
> Induktion.
> Ist es korrekt, dass man
> 1.) bei der vollständigen Induktion im Induktionsschritt
> lediglich voraussetzt, dass A(n) für ein n [mm]\in \IN[/mm] korrekt
> ist und daraus folgert, dass A(n+1) auch korrekt ist ?  
> 2.) bei der starken vollständigen Induktion im
> Induktionsschritt voraussetzt, dass A(n) für alle n [mm]\le n_0[/mm]
> korrekt ist und daraus folgert, dass A(n+1) auch korrekt
> ist ?
>  
> Ich verstehe dies so, dass man bei der starken
> vollständigen Induktion sozusagen mehr Voraussetzungen hat
> als bei der vollständigen Induktion.
> Ist dies so richtig ?

Ja. Schau mal hier

https://de.wikipedia.org/wiki/Vollst%C3%A4ndige_Induktion


unter "Starke Induktion". Dort solltest Du die Gleichwertigkeit der beiden Beweismethoden sehen.


>  
> Ich habe zur starken vollständigen Induktion ein Beispiel
> zur Primfaktorzerlegung gefunden (Zeige, dass sich jede
> natürliche Zahl in Primfaktoren zerlegen lässt).
>  Gibt es hier noch weitere Beispiele ?

Beispie: Identitätssatz für Potenzreihen:

Sei [mm] \sum_{n=0}^{\infty}a_nx^n [/mm] eine Potenzreihe mit Konvergenzradius R>0, I=(-R,R) und f(x)= [mm] \sum_{n=0}^{\infty}a_nx^n [/mm] für x [mm] \in [/mm] I. Ist weiter [mm] (x_m) [/mm] eine Folge in I mit [mm] x_m \to [/mm] 0, [mm] x_m \ne [/mm] 0 für alle m und [mm] f(x_m)=0 [/mm] für alle m, so ist [mm] a_n=0 [/mm] für alle n [mm] \in \IN_0. [/mm]


Versuche das mal mit starker Induktion zu beweisen (hierbei benötigst Du die Stetigkeit von f auf I).


>
> Die "üblichen" Induktions-Beweisaufgaben lassen sich m.E.
> mit vollständiger Induktion lösen.
> Ist dies so korrekt ?

Na ja, was sind denn  "üblichen" Induktions-Beweisaufgaben  ??

>
> Danke für eure Antworten.
>
> Viele Grüße
>  Rubi
>  
> Ich habe diese Frage in keinem anderen Forum gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]