matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometriesphärische Isometrien
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - sphärische Isometrien
sphärische Isometrien < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sphärische Isometrien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Mo 05.04.2010
Autor: congo.hoango

Aufgabe
Seien [mm] A=\vektor{\bruch{1}{2}\wurzel{3} \\ \bruch{1}{2} \\ 0}, [/mm] B= [mm] \vektor{0 \\ 1 \\ 0}, C=\vektor{\bruch{1}{2}\wurzel{2} \\ 0\\ \bruch{1}{2}\wurzel{2}} \in S^2. [/mm]

Warum existiert keine Isometrie mit [mm] \varphi(A)=B [/mm] und [mm] \varphi(B)=C? [/mm]

Also ich habe mal im Skript geschaut und da steht dass eine Abbildung sphärische Isometrie heißt, wenn [mm] d_s(\varphi(x), \varphi(y))=d_s(x,y) [/mm] gilt - sie also abstandstreu ist.

Aber wie kann ich erklären, dass keine solche Abbildung existiert?

Danke schonmal für Antworten und

Gruß vom congo

        
Bezug
sphärische Isometrien: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Mo 05.04.2010
Autor: rainerS

Hallo!

> Seien [mm]A=\vektor{\bruch{1}{2}\wurzel{3} \\ \bruch{1}{2} \\ 0},[/mm]
> B= [mm]\vektor{0 \\ 1 \\ 0}, C=\vektor{\bruch{1}{2}\wurzel{2} \\ 0\\ \bruch{1}{2}\wurzel{2}} \in S^2.[/mm]
>  
> Warum existiert keine Isometrie mit [mm]\varphi(A)=B[/mm] und
> [mm]\varphi(B)=C?[/mm]
>  Also ich habe mal im Skript geschaut und da steht dass
> eine Abbildung sphärische Isometrie heißt, wenn
> [mm]d_s(\varphi(x), \varphi(y))=d_s(x,y)[/mm] gilt - sie also
> abstandstreu ist.
>
> Aber wie kann ich erklären, dass keine solche Abbildung
> existiert?

Hast du die Abstände ausgerechnet? Ist [mm] $d_s(\varphi(A),\varphi(B)) [/mm] = [mm] d_s(A,B)$ [/mm] ?

Tipp: da alle drei Vektoren die Norm 1 haben, brauchst du nur die Skalarprodukte auszurechnen.

Viele Grüße
   Rainer



Bezug
                
Bezug
sphärische Isometrien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:31 Di 06.04.2010
Autor: congo.hoango

Vielen Dank für deine Antwort!

Die Abbildung [mm] \varphi [/mm] ist ja nicht gegeben, von daher kann ich nicht einfach überprüfen ob sie abstandstreu ist. Ich soll ja gerade zeigen, dass keine solche Abbildung exisitiert.

Gruß
congo

Bezug
                        
Bezug
sphärische Isometrien: Antwort
Status: (Antwort) fertig Status 
Datum: 10:48 Di 06.04.2010
Autor: fred97

Rechne doch einfach nach:

            Abstand von A und B [mm] \ne [/mm] Abstand von B und C

FRED

Bezug
                                
Bezug
sphärische Isometrien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:51 Di 06.04.2010
Autor: congo.hoango

Hups, ok so einfach ist das....sorry, hatte nen Brett vorm Kopf. Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]