matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysissowas wie unten^^
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - sowas wie unten^^
sowas wie unten^^ < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sowas wie unten^^: polynomdivision...
Status: (Frage) beantwortet Status 
Datum: 14:03 Mi 23.11.2005
Autor: satanicskater

so hallo an alle,
eigentlich hab ich die gleiche frage wie gestern, aber diesmal will ich nur von euch hören: ja, richtig.. korrekt, oder so.. also dann ma los:
folgende funktion:
[mm] (x^4-2x²)/ [/mm] (x-1)
also eine asymptote lieggt bei x=1 und die andere. ..
     [mm] x^4 [/mm] - 2x² : (x-1) = x³+x² - x - 1 - 1/(x-1)
   [mm] -(x^4-x³) [/mm]
            x³ - 2x²
          -(x³ - x²)
                  -x²
                -(-x² + x)
                          -x  
                        -(-x +1)
                               -1
wobei ich mir beim allerletzten schritt unsicher bin..
so was sagt ihr dazu??

        
Bezug
sowas wie unten^^: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Mi 23.11.2005
Autor: Benni_K

Hallo!

Deine Polynomdivision ist korrekt. Falls du das selbst überprüfen willst, rechne doch einfach die Probe: [mm] (x^{3} + x^{2} - x - 1 - \bruch{1}{x-1}) \cdot (x - 1) [/mm]. Als Ergebnis sollte [mm] x^{4} - 2x^{2} [/mm] herauskommen.

Bezug
                
Bezug
sowas wie unten^^: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Mi 23.11.2005
Autor: satanicskater

danke.. und nur so als generelle frage: das is doch noch nich die asymptote der anfangsfunktion oder?


Bezug
                        
Bezug
sowas wie unten^^: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Mi 23.11.2005
Autor: Benni_K

Hallo!

Durch die Polynomdivision haben wir indirekt die Asymptotengleichung ausgerechnet. Die Asymptote zu der Funktion [mm] \bruch{(x^{4} + 2x^{2})}{(x - 1)} [/mm] lautet dann dementsprechend [mm] x^{3} + x^{2} - x - 1 [/mm]. Bei gebrochen rationalen Funktionen bekommt man durch die Polynomdivision in den meisten Fällen die Gleichung der Asymptoten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]