matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikskatspiel - wahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - skatspiel - wahrscheinlichkeit
skatspiel - wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

skatspiel - wahrscheinlichkeit: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:40 Fr 05.10.2012
Autor: aaaa1

Folgende Frage bringt mich zum Verzweifeln:

Wie groß ist die Laplace-W , dass beim Austeilen von Skatarten jeder Spieler mindestens einen Buben erhält?

Es besteht ja aus 32 Karten und 10 pro Person ? Davon bin ich jetzt einfach ausgegangen:

P ( X [mm] \ge [/mm] 2) = [mm] \bruch{\vektor{4 \\ 2} \vektor{28 \\ 8}}{\vektor{32 \\ 10}} [/mm]

+ [mm] \bruch{\vektor{4 \\ 3} \vektor{28 \\ 7}}{\vektor{32 \\ 10}} [/mm]


jedoch ist da irgendwas falsch dran, da das richtige Ergebnis 0.431 lautet, was mache ich also falsch?



        
Bezug
skatspiel - wahrscheinlichkeit: Tipp zum Einstieg
Status: (Antwort) fertig Status 
Datum: 20:02 Fr 05.10.2012
Autor: Al-Chwarizmi


> Folgende Frage bringt mich zum Verzweifeln:
>  
> Wie groß ist die Laplace-W , dass beim Austeilen von
> Skatarten jeder Spieler mindestens einen Buben erhält?
>  
> Es besteht ja aus 32 Karten und 10 pro Person ? Davon bin
> ich jetzt einfach ausgegangen:
>  
> P ( X [mm]\ge[/mm] 2) = [mm]\bruch{\vektor{4 \\ 2} \vektor{28 \\ 8}}{\vektor{32 \\ 10}}[/mm]
>  
> + [mm]\bruch{\vektor{4 \\ 3} \vektor{28 \\ 7}}{\vektor{32 \\ 10}}[/mm]
>  
>
> jedoch ist da irgendwas falsch dran, da das richtige
> Ergebnis 0.431 lautet, was mache ich also falsch?


Hallo aaa1,

deine obige Rechnung verstehe ich leider überhaupt nicht.
Insbesondere, was du mit X und mit der Ungleichung
[mm] X\ge2 [/mm] meinst, ist mir schleierhaft.
Mal zuerst zu den Voraussetzungen: Das gesamte Karten-
spiel besteht aus 32 Karten, darunter sind 4 Buben.
Jeder von 3 Spielern erhält 10 Karten, und die restlichen
2 Karten bleiben auf dem Tisch.

Man kann sich klar machen, dass genau dann jeder der
3 Spieler mindestens einen Buben erhält, wenn genau
einer zwei davon und die anderen beiden je einen
bekommen, oder aber auch noch dann, wenn jeder der
3 genau einen erhält und genau einer im "Skat" auf dem
Tisch bleibt. Rechne also z.B. zuerst die W'keit aus, dass
Spieler A genau 2 und B und C je einen Buben erhalten.
Diese W'keit muss man dann mit 3 multiplizieren, weil
ja an die Stelle von A (mit den 2 Buben) ebensogut B
oder C treten könnten. Dazu addieren muss man dann
noch die W'keit für den zweiten Fall (je ein Bube für jeden
der 3 Spieler).

Den Rest überlasse ich dir mal.

LG   Al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]