matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationsin(x)^x mit L'Hopital
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - sin(x)^x mit L'Hopital
sin(x)^x mit L'Hopital < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sin(x)^x mit L'Hopital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Di 16.02.2010
Autor: Memorius

Aufgabe
Bestimmen Sie [mm] \limes_{x\rightarrow 0} sin^{x}(x) [/mm]

Hallo!

Irgendwo in meiner Rechnung habe ich einen Fehler. Nur ich finde ihn nicht:

[mm] \limes_{x\rightarrow 0} sin^{x}(x) [/mm] =  [mm] \limes_{x\rightarrow 0} e^{x*ln(sin(x))} [/mm] = [mm] e^{ \limes_{x\rightarrow 0} \bruch{ln(sin(x))}{\bruch{1}{x}}} [/mm]

Betrachten wir ab nun an nur  [mm] \limes_{x\rightarrow 0} \bruch{ln(sin(x))}{\bruch{1}{x}} [/mm]

Mit L'Hopital bekommt man: [mm] \limes_{x\rightarrow 0} \bruch{\bruch{cos(x)}{sin(x)}}{- \bruch{1}{x^{2}}} [/mm]

ableiten: [mm] \limes_{x\rightarrow 0}\bruch{\bruch{cos^{2}(x) + sin^{2}(x)}{sin²(x)}}{\bruch{2}{x^{3}}} [/mm] = [mm] \limes_{x\rightarrow 0}\bruch{x^{3}}{2*sin^{2}(x)} [/mm]

wieder ableiten: [mm] \limes_{x\rightarrow 0}\bruch{3x^{2}}{2*(2*sin(x)cos(x))} [/mm] = [mm] \limes_{x\rightarrow 0}\bruch{3x^{2}}{2*sin(2x)} [/mm]

ableiten: [mm] \limes_{x\rightarrow 0}\bruch{6x}{4*cos(2x)} [/mm]

ableiten:  [mm] \limes_{x\rightarrow 0}\bruch{6}{8*sin(2x)} [/mm]


Wer kann helfen?

        
Bezug
sin(x)^x mit L'Hopital: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Di 16.02.2010
Autor: schachuzipus

Hallo Memorius,

> Bestimmen Sie [mm]\limes_{x\rightarrow 0} sin^{x}(x)[/mm]
>  Hallo!
>  
> Irgendwo in meiner Rechnung habe ich einen Fehler. Nur ich
> finde ihn nicht:
>  
> [mm]\limes_{x\rightarrow 0} sin^{x}(x)[/mm] =  [mm]\limes_{x\rightarrow 0} e^{x*ln(sin(x))}[/mm]
> = [mm]e^{ \limes_{x\rightarrow 0} \bruch{ln(sin(x))}{\bruch{1}{x}}}[/mm] [ok]

genau!

>  
> Betrachten wir ab nun an nur  [mm]\limes_{x\rightarrow 0} \bruch{ln(sin(x))}{\bruch{1}{x}}[/mm]
>  
> Mit L'Hopital bekommt man: [mm]\limes_{x\rightarrow 0} \bruch{\bruch{cos(x)}{sin(x)}}{- \bruch{1}{x^{2}}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

[ok]

Oha, bitte erst vereinfachen zu $-\frac{x^2\cos(x)}{\sin(x)$, was gegen $\frac{0}{0}$ strebt.

Hier nochmal ran ...

>  
> ableiten: [mm]\limes_{x\rightarrow 0}\bruch{\bruch{cos^{2}(x) + sin^{2}(x)}{sin²(x)}}{\bruch{2}{x^{3}}}[/mm]
> = [mm]\limes_{x\rightarrow 0}\bruch{x^{3}}{2*sin^{2}(x)}[/mm]
>  
> wieder ableiten: [mm]\limes_{x\rightarrow 0}\bruch{3x^{2}}{2*(2*sin(x)cos(x))}[/mm]
> = [mm]\limes_{x\rightarrow 0}\bruch{3x^{2}}{2*sin(2x)}[/mm]
>
> ableiten: [mm]\limes_{x\rightarrow 0}\bruch{6x}{4*cos(2x)}[/mm] [ok]

Was kommt den hier heraus für [mm] $x\to [/mm] 0$ ??

Doch [mm] $\frac{0}{4}=0$ [/mm]

Dasselbe hättest du mit einem Schritt nach der erwähnten Vereinfachung erhalten ...

>
> ableiten:  [mm]\limes_{x\rightarrow 0}\bruch{6}{8*sin(2x)}[/mm] [stop]

Hier waren die Voraussetzungen für die Anwendung von de l'Hôpital nicht erfüllt !

>
>
> Wer kann helfen?


LG

schachuzipus


Bezug
                
Bezug
sin(x)^x mit L'Hopital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Di 16.02.2010
Autor: Memorius

Moment, der Grenzwert von [mm] sin^{x}(x) [/mm] für x -> 0 ist aber nicht [mm] e^{0} [/mm] = 1. [keineahnung]

Bezug
                        
Bezug
sin(x)^x mit L'Hopital: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Di 16.02.2010
Autor: wieschoo

Anscheinen doch. Die Rechnung ist komplett richtig.
Also [mm] e^0=1. [/mm]

Bezug
                                
Bezug
sin(x)^x mit L'Hopital: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:06 Di 16.02.2010
Autor: Memorius

Gruml, gruml. Und hatte was völlig anderes in Erinnerung...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]