matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheoriesigma algebra/maß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maßtheorie" - sigma algebra/maß
sigma algebra/maß < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sigma algebra/maß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Do 28.10.2010
Autor: meep

Aufgabe
Es sei X eine überabzählbare Menge,

[mm] \mathcal{A} [/mm] := { A [mm] \subset [/mm] X | A ist abzählbar oder [mm] A^c [/mm] ist abzählbar }

Man zeige:

1. [mm] \mathcal{A} [/mm] ist eine [mm] \sigma [/mm] -algebra

2. Die folgende Abbildung [mm] \mu [/mm] : [mm] \mathcal{A} \to \IR [/mm] definiert ein Maß

[mm] \mu [/mm] (A) =  0, wenn A abzählbar ist
                1, wenn [mm] A^c [/mm] abzählbar ist

hi zusammen,

habe bezüglich der aufgabe einige schwierigkeiten. für eine [mm] \sigma [/mm] -algebra muss gelten

(i) X [mm] \in \mathcal{A} [/mm]

(ii) A [mm] \in \mathcal{A} [/mm] => [mm] A^c [/mm] := X \ A [mm] \in \mathcal{A} [/mm]

(iii) [mm] \mathcal{A} [/mm] ist [mm] \sigma [/mm] - [mm] \cup [/mm] -stabil

wenn die mengen explizit angegeben sind ist es kein thema, aber bei sowas hier komm ich ins straucheln, da ich nicht weiß wie man hier die 3 bedingungen prüfen soll :(

wäre nett wenn mir jemand nen tipp geben könnte wie ich an die aufgabe ran muss.

lg

meep





        
Bezug
sigma algebra/maß: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Do 28.10.2010
Autor: Gonozal_IX

Huhu,

na i) sollte doch kein Problem sein.

Ist  denn $X [mm] \in \mathcal{A}$ [/mm] ? Was musst du denn gelten damit X da drin liegt? Gilt das?

ii) ist letztlich auch trivial.... Wenn A drinliegt, was gilt denn dann für A? Und was gilt dann für [mm] A^c [/mm] ?

iii) Hier wirds schon problematischer, mache eine Fallunterscheidung.

1.) Alle [mm] A_j [/mm] abzählbar

2.) Es gibt ein [mm] A_j, [/mm] dass überabzählbar ist, was weisst du dann über [mm] (A_j)^c [/mm] ?

Betrachte nun das Komplement [mm] \left(\bigcup_{j=1}^{\infty}A_j\right)^c [/mm]
Kannst du zwischen dem und [mm] (A_j)^c [/mm] eine Verbindung herstellen?

MFG,
Gono.

Bezug
                
Bezug
sigma algebra/maß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:46 Fr 29.10.2010
Autor: meep

hi gono danke für die antwort aber ich hab folgenden hänger,

nehmen wir mal zum beispiel an X = {1,2} und dann is [mm] \mathcal{P}(X)= [/mm] {{1,2},{1},{2}, [mm] \emptyset [/mm] }

nun is ja [mm] \mathcal{A} \subset \mathcal{P}(X) [/mm] und da nehm ich mir mal z.B. 2 Mengen raus und sag dann [mm] \mathcal{A} [/mm] = {{1}, [mm] \emptyset [/mm] } da sieht man dann doch dass X [mm] \not\in \mathcal{A} [/mm] ist, wie kann dann meine behauptung oben richtig sein.

ich raffs nicht :(

lg

meep

wäre nett wenn mir jemand helfen könnte was das angeht.

Bezug
                        
Bezug
sigma algebra/maß: Antwort
Status: (Antwort) fertig Status 
Datum: 01:12 Fr 29.10.2010
Autor: Marc

Hallo meep,

1: > nehmen wir mal zum beispiel an X = {1,2} und dann is 
2: > [mm]\mathcal{P}(X)=[/mm] {{1,2},{1},{2}, [mm]\emptyset[/mm] }
3: >  
4: > nun is ja [mm]\mathcal{A} \subset \mathcal{P}(X)[/mm] und da nehm 
5: > ich mir mal z.B. 2 Mengen raus und sag dann [mm]\mathcal{A}[/mm] = 
6: > {{1}, [mm]\emptyset[/mm] } da sieht man dann doch dass X [mm]\not\in \mathcal{A}[/mm] 
7: > ist, wie kann dann meine behauptung oben richtig sein.


Die Behauptung ist dann eben für dein [mm] $\mathcal{A}$ [/mm] falsch; für [mm] $X=\{1,2\}$ [/mm] ist [mm] $\mathcal{A}:=\{\{1\},\emptyset\}$ [/mm] keine [mm] $\sigma$-Algebra [/mm] (eben weil [mm] $X\not\in\mathcal{A}$). [/mm]

In deiner Aufgabe ist $X$ eine überabzählbare Menge.
Weiterhin ist [mm] $\mathcal{A}$ [/mm] (von dem wir noch nicht wissen, ob es sich um eine [mm] $\sigma$-Algebra [/mm] handelt) definiert als die Menge aller Teilmengen von $X$, die selbst abzählbar sind oder deren Komplement abzählbar ist.

Um zu entscheiden, ob [mm] $X\in\mathcal{A}$, [/mm] musst du dich also fragen: Ist $X$ abzählbar oder [mm] $X^C$ [/mm] abzählbar?
Falls ja, dann [mm] $X\in\mathcal{A}$, [/mm] falls nein, dann [mm] $X\not\in\mathcal{A}$ [/mm] (und [mm] $\mathcal{A}$ [/mm] kann keine [mm] $\sigma$-Algebra [/mm] sein).

Viele Grüße,
Marc

Bezug
                                
Bezug
sigma algebra/maß: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:28 Fr 29.10.2010
Autor: meep

edit: sollte keine mitteilung werden
Bezug
                                
Bezug
sigma algebra/maß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:30 Fr 29.10.2010
Autor: meep

hi marc, danke erstmal.

nun verwirrt mich einiges an folgender aussage von dir
  

> Um zu entscheiden, ob [mm]X\in\mathcal{A}[/mm], musst du dich also
> fragen: Ist [mm]X[/mm] abzählbar oder [mm]X^C[/mm] abzählbar?
>  Falls ja, dann [mm]X\in\mathcal{A}[/mm], falls nein, dann
> [mm]X\not\in\mathcal{A}[/mm] (und [mm]\mathcal{A}[/mm] kann keine
> [mm]\sigma[/mm]-Algebra sein).

Laut der Aussage oben müsste ja eigentlich X abzählbar sein, sonst würde die Aufgabe keinen Sinn machen. Aber oben ist X als überabzählbar definiert.

lg

meep


Bezug
                                        
Bezug
sigma algebra/maß: Antwort
Status: (Antwort) fertig Status 
Datum: 07:34 Fr 29.10.2010
Autor: schachuzipus

Hallo meep,


> hi marc, danke erstmal.
>  
> nun verwirrt mich einiges an folgender aussage von dir
>
> > Um zu entscheiden, ob [mm]X\in\mathcal{A}[/mm], musst du dich also
> > fragen: Ist [mm]X[/mm] abzählbar oder [mm]X^C[/mm] abzählbar?
>  >  Falls ja, dann [mm]X\in\mathcal{A}[/mm], falls nein, dann
> > [mm]X\not\in\mathcal{A}[/mm] (und [mm]\mathcal{A}[/mm] kann keine
> > [mm]\sigma[/mm]-Algebra sein).
>  
> Laut der Aussage oben müsste ja eigentlich X abzählbar
> sein, sonst würde die Aufgabe keinen Sinn machen.

[aeh]

Marc hat doch geschrieben (und so stehts in der Aufgabe), dass [mm]X\in\mathcal{A}[/mm], falls [mm]X[/mm] abzählbar oder [mm]X^C[/mm] abzählbar.


> Aber oben ist X als überabzählbar definiert.

Jo, was ist dann mit [mm]X^C[/mm] ?? Ist das abzählbar oder überabzählbar?


>  
> lg
>  
> meep
>  

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]