semidirektes Produkt < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:10 So 01.11.2009 | Autor: | side |
Aufgabe | Seien [mm] (G_1 [/mm] , [mm] \*_1) [/mm] und [mm] (G_2 [/mm] , [mm] \*_2) [/mm] zwei Gruppen und [mm] \rho:G_2\to\!Aut(G_1) [/mm] ein Gruppenhomomorphismus. Zeigen sie, dass das Mengentheoretische Produkt [mm] G_1\times\!G_2 [/mm] mit der Verknüpfung [mm] \times\!_{\rho}:
[/mm]
[mm] (g_1,g_2)\times\!_{\rho}(g_1',g_2')= (g_1\*_1\rho(g_2)\!g_1'\; ,\; g_2\*_2g_2')
[/mm]
eine Gruppe ist. Man nennt diese Gruppe das Semidirekte Produkt von [mm] G_1 [/mm] und [mm] G_2 [/mm] bzgl. [mm] \rho. [/mm] |
Hallo zusammen
Ich denke mal, ich muss hier die Gruppeneigenschaften nachrechnen, oder?
also assoziativität, neutrales und Inverses.
Ich versteh aber noch nicht so genau, was die Verknüpfung überhaupt macht... ein kleiner Tip wäre da schon mal ganz gut... danke im Voraus, grüße
side
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:15 So 01.11.2009 | Autor: | felixf |
Hallo side!
> Seien [mm](G_1[/mm] , [mm]\*_1)[/mm] und [mm](G_2[/mm] , [mm]\*_2)[/mm] zwei Gruppen und
> [mm]\rho:G_2\to\!Aut(G_1)[/mm] ein Gruppenhomomorphismus. Zeigen
> sie, dass das Mengentheoretische Produkt [mm]G_1\times\!G_2[/mm] mit
> der Verknüpfung [mm]\times\!_{\rho}:[/mm]
> [mm](g_1,g_2)\times\!_{\rho}(g_1',g_2')= (g_1\*_1\rho(g_2)\!g_1'\; ,\; g_2\*_2g_2')[/mm]
> eine Gruppe ist. Man nennt diese Gruppe das Semidirekte
> Produkt von [mm]G_1[/mm] und [mm]G_2[/mm] bzgl. [mm]\rho.[/mm]
>
> Hallo zusammen
> Ich denke mal, ich muss hier die Gruppeneigenschaften
> nachrechnen, oder?
Genau.
> also assoziativität, neutrales und Inverses.
(Und Abgeschlossenheit.)
> Ich versteh aber noch nicht so genau, was die Verknüpfung
> überhaupt macht... ein kleiner Tip wäre da schon mal ganz
> gut... danke im Voraus, grüße
Nun, [mm] $\rho(g_2)$ [/mm] ist ein Element aus [mm] $Aut(G_1)$, [/mm] womit [mm] $\rho(g_2)(g_1')$ [/mm] wieder ein Element von [mm] $G_1$ [/mm] ist. Und dieses wird jetzt von Rechts an [mm] $g_1$ [/mm] multipliziert (mit der Multiplikation von [mm] $G_1$), [/mm] und dies als neue erste Komponente genommen.
Versuch doch einfach mal die Gruppeneigenschaften nachzurechnen.
LG Felix
|
|
|
|