matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogiksemantisch unabhängig/widerspr
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Logik" - semantisch unabhängig/widerspr
semantisch unabhängig/widerspr < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

semantisch unabhängig/widerspr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Di 23.10.2007
Autor: sandia

Aufgabe
Es sei X = [mm] {H_{1},H_{2}} [/mm] mit
[mm] H_{1} [/mm] = [mm] \forall [/mm] x [mm] \forall [/mm] y (S(y,R(x,y)) [mm] \wedge [/mm] ( [mm] \sim [/mm] R (x,y) = x [mm] \to \sim [/mm] x = y))

[mm] H_{2} [/mm] = [mm] \sim \exists [/mm] x [mm] \exists [/mm] y ( [mm] \sim [/mm] R(x,y) = x [mm] \wedge \sim [/mm] R(x,y) = y)

Überprüfen Sie, ob X semantisch unabhängig bzw. semantisch widerspruchsfrei ist und beweisen Sie Ihre Antwort.

Ich finde leider kein Modell, welches diese Aufgabe erfüllt.

Ich weiß, dass wenn die semantische Widerspruchsfreiheit gilt, dann existiert ein Modell w mit [mm] H_{1}, H_{2} \in ag_{w}^{B}. [/mm]

Und für semantische Unabhängigkeit gilt, dass ein Modell w existiert, in dem [mm] H_{1} \in ag_{w}^{B} \wedge H_{2} \not\in ag_{w}^{B}. [/mm]

Ich habe beim Suchen eines Modells nur das Problem, dass ich speziell in dieser Aufgabe nicht unterscheiden kann, welches Relation und welches Funktion ist .

Ich wäre unheimlich dankbar, wenn sich bei euch eine Lösung für dieses Problem oder wenigstens ein Ansatz dafür finden könnte.

Viel Spaß dabei ;) ...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
semantisch unabhängig/widerspr: R und S
Status: (Antwort) fertig Status 
Datum: 15:25 Di 23.10.2007
Autor: Gnometech

Grüße!

Korrigiere mich, wenn ich falsch liege, aber allem Anschein nach handelt es sich bei R um eine Funktion (sonst würde $R(x,y) = x$ wenig Sinn machen) und bei $S$ um eine Relation.

Die zweite Aussage kann man doch wie folgt umformen:

[mm] $H_2 [/mm] = [mm] \; \forall \; [/mm] x [mm] \; \forall \; [/mm] y [mm] \big(R(x,y) [/mm] = x [mm] \vee [/mm] R(x,y) = [mm] y\big)$ [/mm]

Für Unabhängigkeit und Widerspruchsfreiheit spielt der erste Teil von [mm] $H_1$ [/mm] keine Rolle, da $S$ ja in [mm] $H_2$ [/mm] gar nicht vorkommt. In einem Modell, bei dem $S$ immer wahr ist, ist dieser Teil immer erfüllt. Der zweite Teil der Konjunktion [mm] $H_1$ [/mm] sagt, etwas anders geschrieben:

$R(x,y) [mm] \not= [/mm] x [mm] \Rightarrow [/mm] x [mm] \not= [/mm] y$ bzw. $x = y [mm] \Rightarrow [/mm] R(x,y) = x$

Nimm also ein Modell mit nur einem Element $X$ und definiere die Relation $S(X,X)$ als wahr und die Funktion entsprechend durch $R(X,X) := X$. Dann sind [mm] $H_1$ [/mm] und [mm] $H_2$ [/mm] offensichtlich beide erfüllt.

Unabhängig sind die Aussagen aber auch: Nimm dazu ein Modell mit mindestens drei Objekten $X,Y$ und $Z$, definiere erneut $S$ als immer erfüllt und setze $R(x,x) = x$ für $x [mm] \in \{X,Y,Z\}$. [/mm] Damit ist [mm] $H_1$ [/mm] erfüllt. Wenn aber z.B. $R(X,Y) = Z$ gilt, dann ist [mm] $H_2$ [/mm] in diesem Modell nicht erfüllt.

Alles klar? Falls nicht, frag einfach nochmal nach. :-)

Liebe Grüße,
Lars

Bezug
        
Bezug
semantisch unabhängig/widerspr: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:37 Di 23.10.2007
Autor: sandia

Vielen Dank Lars!!!

Ich glaub ich komm langsam aber sicher vorwärts ... Für mich ist es wirklich nicht einfach hinter diese Strukturen zu steigen. Ich weiß, eigentlich sollte ich ein Auge dafür haben, aber im moment ist es noch ein totales chaos.

Ich danke nochmal und hoffe nun damit arbeiten zu können ... :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]