matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Eigenwerteselbstadjungiert/eigenwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - selbstadjungiert/eigenwerte
selbstadjungiert/eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

selbstadjungiert/eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Di 16.07.2013
Autor: drossel

Aufgabe
Sei [mm] dim_\mathbb{C}V [/mm] < [mm] \infty [/mm] , <,> hermitesche Form auf V, [mm] f\in [/mm] End(V).
es existiere ein [mm] h\in [/mm] End(V) , sodaß  [mm] f=h\circ [/mm] h* (h* ist die adjungierte Abbildung zu h),
beweise oder wiederlege:
1) f selbstadjungiert
2)f diagonalisierbar
3) [mm] \in \mathbb{R}_{\ge 0} \forall v\in [/mm] V.
4) Eigenwerte von f sind [mm] \in \mathbb{R}_{\ge 0} [/mm]
5) Sei nun f selbstadjungiert mit Eigenwerten [mm] \in \mathbb{R}_{>0} [/mm] . Gibt es ein [mm] h\in [/mm] End(V) mit [mm] f=h\circ [/mm] h* ?



zur 1 ) habe ich schon gezeigt, dass es stimmt
zur 2) auch ok, wahr
zur 4) Edit2: weiss, das der Spektralsatz nicht ausschließt, dass Eigenwerte negativ sein können. Wie ist das jetzt mit der Voraussetzung [mm] f=h\circ [/mm] h*? stimmt die Aussage dann nicht wieder?
wie geht man denn bei 3) vor?
Und bei 5)
f selbstadjungiert heißt <f(v),w>=<v,f(w)> für alle v,w [mm] \in [/mm] V. Und man hat
[mm] f(v)=\lambda [/mm] v , [mm] \lambda \in \mathhbb{R}_{>0}. [/mm]
Um eine Intuition zu bekommen: Wenn ich das ganze mit Matrizen mache, bedeutet dass ja [mm] A=B*\overline{B}^t [/mm]
A Darstellungsmatrix von f und B entsprechend für g bezüglich geeigneter Basen.  Ich denke die umgekehrte Richtung der Aussage stimmt, aber so wie es das steht weiss ich leider nicht.
Kann mir jemand einen Tip geben?
Mfg


        
Bezug
selbstadjungiert/eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 06:35 Mi 17.07.2013
Autor: fred97

Zu 3)

<f(v),v>=<hh*v,v>=<h*v,h*v> [mm] \ge [/mm] 0

Zu 4)

Ist [mm] f(v)=\lambda [/mm] v, so folgt mit 3):

   [mm] \lambda [/mm] <v,v>=<f(v),v>=<h*v,h*v> [mm] \ge [/mm] 0

Zu 5)

Sei n=dim V, seien [mm] \lambda_1,..., \lambda_n [/mm] die Eigenwerte von f und sei [mm] v_1,...,v_n [/mm] eine ONB von V aus Eigenvektoren von f, also [mm] f(v_j)=\lambda_j v_j [/mm] und [mm] \lambda_j [/mm] >0

Dann:

    [mm] f(v)=\summe_{j=1}^{n} \lambda_j *v_j [/mm]   für jedes v [mm] \in [/mm] V.

Probier mal

   [mm] h(v):=\summe_{j=1}^{n} \wurzel{\lambda_j} *v_j [/mm]

aus.

FRED





Bezug
                
Bezug
selbstadjungiert/eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:42 Mi 17.07.2013
Autor: drossel

Danke, habe alles bis auf der 3 verstanden. Wieso ist <h*(v),h*(v)> [mm] \ge [/mm] 0 ?

Bezug
                        
Bezug
selbstadjungiert/eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 11:33 Mi 17.07.2013
Autor: Gonozal_IX

Hiho,

schau dir nochmal die Definition des Skalarprodukts an!

MFG,
Gono.

Bezug
                        
Bezug
selbstadjungiert/eigenwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 Mi 17.07.2013
Autor: drossel

Achso stimmt .. Danke sehr

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]