matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikschwingungsgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - schwingungsgleichung
schwingungsgleichung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schwingungsgleichung: allgemeine frage
Status: (Frage) beantwortet Status 
Datum: 00:13 Fr 12.09.2008
Autor: MatheFrager

Aufgabe
WARUM leitet man [mm] s(t)=s_{0}*sin(wt+\partial),also [/mm] diese Ortsfunktion Federausschlag zum Zeitpunkt t   ab, um v(t) zu erhalten , also die Geschwindigkeit, und dann nochmal um a(t) zu erhalten....???????

Ich bitte um eine allgemeine Erkärung, warum die erste Ableitung des Ortes die Geschwindigkeit ergibt, und dessen Ableitung die Beschleunigung am jeweiligen Zeitpunkt.

        
Bezug
schwingungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:35 Fr 12.09.2008
Autor: Event_Horizon

Hallo!

Du kennst doch sicher  [mm] v=\frac{s}{t} [/mm]

Das gilt aber nur, solange v - und damit die Wegändertung pro Zeit konstant ist.

Wenn sich nun aber die zurückgelegte Wegstrecke pro Zeit ständig ändert, heißt das ja, daß sich die Geschwindigkeit ständig ändert.

In dem Fall schaut man sich ein sehr, sehr kleines Zeitstück [mm] $\Delta [/mm] t$ an, und schaut, um wieviel sich die Strecke darin geändert hat [mm] ($\Delta [/mm] s$). In diesem kleinen Zeitintervall gilt nun wieder [mm] v=\frac{\Delta s}{\Delta t} [/mm] und beim Übergang zu unendlich kleinen Intervallen wird daraus eine Ableitung: [mm] v=\frac{ds}{dt} [/mm]
Oder anschaulich: Zeichne das s-t-Diagramm deiner Schwingung. Um die momentane Geschwindigkeit zu einem beliebigen Zeitpunkt zu bestimmen, legst du eine Tangente an die Kurve zu diesem Zeitpunkt. Die Steigung dieser Kurve [mm] (m=\frac{\Delta s}{\Delta t}) [/mm] ist die Geschwindigkeit zu diesem Zeitpunkt!


Für die Beschleunigung gilt das gleiche, wenn du Weg gegen Geschwindigkeit tauschst.

Mach es dir an der allgemeinen Formel für die gleichmäßig beschleunigte Bewegung klar:

[mm] s(t)=s_0+v_0t+\frac{1}{2}at^2 [/mm]

wie sehen 1. und 2. Ableitung aus? Stimmt das mit dem, was du kennst überein?



Mit deiner Schwingung hast du eine Bewegung, deren Beschleunigung NICHT mehr konstant ist, sondern sich ebenfalls ändern. Die Formeln, die du grade ausgerechnet hast, stimmen in diesem fall nicht mehr, sondern nur, wenn a=const ist.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]