matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnungschnitt trigonom. Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - schnitt trigonom. Funktionen
schnitt trigonom. Funktionen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schnitt trigonom. Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Di 06.06.2006
Autor: Fairy

Aufgabe
Gegeben ist die Funktion g durch g(x) = 0,5x-a*sin(x)-1 ,  x  [mm] \in [/mm] [0;5], a > 0,5. Ihr Schaubild Kg schließt mit Kf : 0,5x-0,5sin(x)-1 eine Fläche mit dem Inhalt 5 FE ein . Bestimmen sie a.

Hallo

ich lerne gerade für meine Abschlussprüfung (BKFH) und stehe vor dieser Aufgabe.

Da die zwei Graphen eine Fläche einschließen muss man logischerweise erstmal die Schnittpunkte der Graphen berechnen soviel ist mir schonmal klar.

Also f  [mm] \cap [/mm]  g

Also 0,5x-a*sin(x)-1 = 0,5x-0,5sin(x)-1

Als Ergebnis sollte dann sin(x) = 0 , also Schnittpunkte 0 und  [mm] \pi [/mm] für  x  [mm] \in [/mm] [0;5] herauskommen, aber wie ich darauf komme ist mir unklar.

Mein Hauptproblem sind also die Schnittpunkte zweier trigonometrischer Funktionen zu berechnen.

Vielen dank schonmal im Vorraus.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
schnitt trigonom. Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Di 06.06.2006
Autor: M.Rex

Hallo Fairy,

Der Ansatz, den Schnittpunkt von f und g zu berechnen, ist vollkommen korrekt. Also bekomme ich:

0,5x-a*sin(x)-1 = 0,5x-0,5sin(x)-1

Weitere Unformungen ergeben

0,5x-a*sin(x)-1 = 0,5x-0,5sin(x)-1      | +1   |-0,5x  
[mm] \gdw [/mm] -a sin(x) = 0,5 sin(x)              

Die Schnittpunkte sind 0 und alle Werte von x im Intervall [0;5], deren Sinuswert 0 ergibt, weil die Aussage von oben (-a sin(x) = 0,5 sin(x)) dann zur wahren Aussage 0=0 führt.

Der Sinus ist, wie du ja an der Funktionskurve erkennen kannst, periodisch.
Also sind die Gesuchten Schnittstellen die Nullstellen der Sinusfunktion zwischen 0 und 5.
Die Nullstellen der Sinusfunktion sind [mm] x_{0} [/mm] = k [mm] \pi [/mm] , k [mm] \in \IZ [/mm] .
Für k = 1 und k= 0 liegt der Wert [mm] k\pi [/mm] in deinem Intervall. Also hast du die Schnittstellen zwischen f ung g bei 0 * [mm] \pi [/mm] = 0 ind 1 * [mm] \pi [/mm] = [mm] \pi \approx [/mm] 3,141....

Also musst du jetzt das Integral


[mm] \integral_{0}^{\pi}{f(x)-g(x)} [/mm] lösen, weil f(x) > g(x) in dem geuchten Bereich von 0 bis [mm] \pi. [/mm] Die Fläche, also das Integral soll 5 ergeben.

Also gilt:

5 = [mm] \integral_{0}^{\pi}{f(x)-g(x)} [/mm]
[mm] \gdw [/mm] 5 = [mm] \integral_{0}^{\pi}{0,5x-0,5sin(x)-1 - [0,5x-a sin(x)-1]} [/mm]
[mm] \gdw [/mm] 5 = [mm] \integral_{0}^{\pi}{-0,5sin(x) + a sin(x)} [/mm]
[mm] \gdw [/mm] 5 = [mm] \integral_{0}^{\pi}{(-0,5 +a)sin(x)} [/mm]
[mm] \gdw [/mm] 5 = (-0,5 +a) [mm] \integral_{0}^{\pi}{sin(x)} [/mm]   Stammfunktion bilden
[mm] \gdw [/mm] 5 = (-0,5 +a) [mm] [-cos(\pi) [/mm] - (-cos(0))]
[mm] \gdw [/mm] 5 = (-0,5 +a) [-(-1) - (-1)]
[mm] \gdw [/mm] 5 = (-0,5 +a) *2
[mm] \gdw [/mm] 5 = -1 +2a
[mm] \gdw [/mm] a = 3

Ich hoffe, das ist halbwegs verständlich und hilft weiter.


Ein Tipp noch: Falls dur dir zum Überblick Verschaffen die Funktionen graphisch anschauen willst, Funkyplot (ist Freeware, kostet also nix) ist ein hervorragendes Programm für sowas.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]