matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenenschneiden sich diese Geraden?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - schneiden sich diese Geraden?
schneiden sich diese Geraden? < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schneiden sich diese Geraden?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Mi 20.09.2006
Autor: JR87

Aufgabe
a: [mm] \overrightarrow{x}= \vektor{2 \\ 7 \\ 8} [/mm] + [mm] t\vektor{5 \\ 0 \\ 3} [/mm]

b: [mm] \overrightarrow{x}=\vektor{4 \\ 4 \\ 4} [/mm] + [mm] s\vektor{0 \\ 9 \\ 1} [/mm]

Ja die Frage ist eigentlich ob sich diese beiden Geraden schneiden. Sonst setze ich die beiden ja immer gleich und benutze dann Gauß, das kann ich ja hier nicht machen, da in der zweiten Gleichung t=0 ist und in der ersten Gleichung s 0 ist.
Am Ende habe ich t = 0,4 und s= [mm] \bruch{1}{4}. [/mm] Ich weiß aber nicht ob das richtig ist.

        
Bezug
schneiden sich diese Geraden?: in 3. Gleichung einsetzen ...
Status: (Antwort) fertig Status 
Datum: 13:08 Mi 20.09.2006
Autor: Loddar

Hallo JR87!



> Sonst setze ich die beiden ja immer gleich und benutze dann Gauß,
> das kann ich ja hier nicht machen, da in der zweiten Gleichung t=0 ist
> und in der ersten Gleichung s  0 ist.

Salopp formuliert: na und? ;-) Damit wird es doch noch einfacher ...


> Am Ende habe ich t = 0,4 und s= [mm]\bruch{1}{4}.[/mm]

Für $s_$ erhalte ich aber $s \ = \ [mm] \bruch{1}{\red{3}}$ [/mm] .


> Ich weiß aber nicht ob das richtig ist.

Setze diese beiden Werte nun in die 3. Gleichung (von der z-Koordinaten) ein und überprüfe, ob sich hieraus eine wahre Aussage ergibt. Wenn ja, schneiden sich die beiden Geraden, anderenfalls nicht ...


Gruß
Loddar


Bezug
                
Bezug
schneiden sich diese Geraden?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Mi 20.09.2006
Autor: JR87

Ja das mit [mm] \bruch{1}{3} [/mm] meinte ich ja ;).

So wenn ich das jetzt einsetze kommt für s = 5,2 und t = [mm] -1\bruch{2}{9} [/mm]

Ist das richtig?

Bezug
                        
Bezug
schneiden sich diese Geraden?: Deine Werte sind mir unklar
Status: (Antwort) fertig Status 
Datum: 13:15 Mi 20.09.2006
Autor: Loddar

Hallo JR87!


> Ja das mit [mm]\bruch{1}{3}[/mm] meinte ich ja ;).

Okay ;-) ...

  

> So wenn ich das jetzt einsetze kommt für s = 5,2 und t = [mm]-1\bruch{2}{9}[/mm]

[kopfkratz3] Wie kommst Du denn darauf?

Setze die Werte [mm] $\blue{t \ = \ \bruch{2}{5}}$ [/mm] und [mm] $\green{s \ = \ \bruch{1}{3}}$ [/mm] in die 3. Gleichung ein:

[mm] $8+3*\blue{t} [/mm] \ = \ [mm] 4+1*\green{s}$ [/mm]

[mm] $8+3*\blue{\bruch{2}{5}} [/mm] \ = \ [mm] 4+1*\green{\bruch{1}{3}}$ [/mm]

Entsteht hieraus nun eine wahre Aussage?


Gruß
Loddar


Bezug
                                
Bezug
schneiden sich diese Geraden?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Mi 20.09.2006
Autor: JR87

ok da finde ich dann keine wahre Aussage -> Die Geraden schneiden dann nicht ja?

also ich hatte es so gemacht: 8 + 3*0,5 = 4 + s
                                                9,2           = 4 + s
                                                5,2           = s

So hab ich das jetzt auch mit t gemacht und dann - [mm] 1\bruch{2}{9} [/mm] herausbekommen. Diese hab ich jetzt mit t= 0,4 und s = [mm] \bruch{1}{3} [/mm] verglichen und festgestellt das die beiden nicht gleich sind. Daraus folgt dann das die Geraden sich nicht schneiden. Kann man das so machen?

Bezug
                                        
Bezug
schneiden sich diese Geraden?: Geht auch so ...
Status: (Antwort) fertig Status 
Datum: 13:32 Mi 20.09.2006
Autor: Loddar

Hallo JR87!


> ok da finde ich dann keine wahre Aussage -> Die Geraden
> schneiden dann nicht ja?

[daumenhoch] Genau!

  

> also ich hatte es so gemacht: 8 + 3*0,5 = 4 + s

Du meinst bestimmt [mm] $0.\red{4}$ [/mm] , oder? ;-)


>        9,2        = 4 + s
>        5,2        = s
>  
> So hab ich das jetzt auch mit t gemacht und dann -
> [mm]1\bruch{2}{9}[/mm] herausbekommen.

Der 2. Schritt ist dann schon überflüssig, wenn Du beim $s_$ keine Übereinstimmung erhältst!

Aber ansonsten ist Deine Vorgehensweise auch in Ordnung [ok] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]