matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionen>satz de l'hospital<
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - >satz de l'hospital<
>satz de l'hospital< < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

>satz de l'hospital<: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 So 30.05.2010
Autor: svcds

wenn ich die Funktion habe

f(x) = 2x / cos(x)
lim
x->0

dann kann ich doch nicht L'Hopital anwenden, oder?

Es ist ja eine 0/1 Situation und weder eine 0/0 oder unendlich/unendlich.

glg

        
Bezug
>satz de l'hospital<: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 So 30.05.2010
Autor: reverend

Hallo svcds,

> wenn ich die Funktion habe
>  
> f(x) = 2x / cos(x)
> lim
> x->0
>  
> dann kann ich doch nicht L'Hopital anwenden, oder?
>  
> Es ist ja eine 0/1 Situation und weder eine 0/0 oder
> unendlich/unendlich.

So ist es.

Es ist doch aber auch gar nicht nötig, denn [mm] \tfrac{0}{1} [/mm] ist ja eindeutig bestimmt...

Grüße
reverend


Bezug
        
Bezug
>satz de l'hospital<: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 So 30.05.2010
Autor: svcds

jetzt hab ich ne andere Funktion

lim x->0

f(x)  = [mm] \bruch{sin(x)}{x^3} [/mm] - [mm] \bruch{cos(x)}{x^2} [/mm]

Dann hab ich ein Mal die Regel angewandt.

lim     [mm] \bruch{x*sin(x)}{3*x^2} [/mm]
x->0

Wenn ich x-> 0 laufen lasse ist der Nenner = 0, darf doch nicht oder?

Dann noch 2x ableiten liefert

lim      [mm] \bruch{2*cos(x)-x*sin(x)}{6} [/mm]
x->0

dann krieg ich [mm] \bruch{2-0}{6} [/mm] heraus, also 1/3 als limes.

Geht das so?

Bezug
                
Bezug
>satz de l'hospital<: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 So 30.05.2010
Autor: schachuzipus

Hallo Knut,

> jetzt hab ich ne andere Funktion
>  
> lim x->0
>  
> f(x)  = [mm]\bruch{sin(x)}{x^3}[/mm] - [mm]\bruch{cos(x)}{x^2}[/mm]
>  
> Dann hab ich ein Mal die Regel angewandt.
>  
> lim     [mm]\bruch{x*sin(x)}{3*x^2}[/mm] [ok]
>  x->0
>  
> Wenn ich x-> 0 laufen lasse ist der Nenner = 0, darf doch
> nicht oder?

Der Zähler aber auch, du kannst also nochmal de l'Hôpital anwenden.

Vereinfache besser vorher:

[mm] $\frac{x\cdot{}\sin(x)}{3x^2}=\frac{1}{3}\cdot{}\frac{\sin(x)}{x}$ [/mm]

Und nun ist dir sicher bekannt, dass [mm] $\lim\limits_{x\to 0}\frac{\sin(x)}{x}=1$ [/mm] ist ?!

Falls nicht, schlage mit de l'Hôpital zu ...


>  
> Dann noch 2x ableiten liefert
>  
> lim      [mm]\bruch{2*cos(x)-x*sin(x)}{6}[/mm]
>  x->0
>  
> dann krieg ich [mm]\bruch{2-0}{6}[/mm] heraus, also 1/3 als limes. [ok]
>  
> Geht das so?

Bisschen umständlich am Ende, aber ja!

Gruß

schachuzipus


Bezug
                        
Bezug
>satz de l'hospital<: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 So 30.05.2010
Autor: svcds

sehr gut danke!

wir sollen es mit L'hopital machen, darum mach ich das lieber so bevor ich nen punktabzug riskiere :)

Bezug
                                
Bezug
>satz de l'hospital<: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 So 30.05.2010
Autor: schachuzipus

Hallo nochmal,

> sehr gut danke!
>  
> wir sollen es mit L'hopital machen, darum mach ich das
> lieber so bevor ich nen punktabzug riskiere :)

Ja, schon klar, aber denke vor der sturen Anwendung ans Vereinfachen.

Ob du nun deinen Term 2mal kompliziert ableitest und Rechenfehler riskierst oder [mm] $\frac{\sin(x)}{x}$ [/mm] mit de l'Hôpital traktierst, ist im Endeffekt dir überlassen, aber letzteren Term sich vorzunehmen scheint mir leichter ...

de l'Hôpital --> [mm] $\frac{\cos(x)}{1}=\cos(x)\longrightarrow [/mm] 1$ für [mm] $x\to [/mm] 0$

+ Vorfaktor [mm] $\frac{1}{3}$ [/mm] ...

Gruß

schachuzipus

Gruß

schachuzipus


Bezug
                                        
Bezug
>satz de l'hospital<: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:23 Mo 31.05.2010
Autor: svcds

ja ich seh solche Vereinfachungen nicht so schnell, da brauch ich erst dieses "aha-erlebnis".

dank dir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]