matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe Zahlensämtliche Lösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "komplexe Zahlen" - sämtliche Lösung
sämtliche Lösung < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sämtliche Lösung: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:24 Do 28.01.2010
Autor: capablanca

Aufgabe
Berechnen Sie sämtliche Lösungen der Gleichung

[mm] z^2=-j [/mm]


Guten Abend, ich kann bei der Aufgabe [mm] \phi [/mm] nicht ausrechnen und würde mich über Tipps freuen.

mein Ansatz:
arctan(y/x) --> y=-1 , x=0

also --> arctan(-1/0) -->?

was mache ich falsch ?

gruß Alex

        
Bezug
sämtliche Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Do 28.01.2010
Autor: abakus


> Berechnen Sie sämtliche Lösungen der Gleichung
>  
> [mm]z^2=-j[/mm]
>  
>
> Guten Abend, ich kann bei der Aufgabe [mm]\phi[/mm] nicht ausrechnen
> und würde mich über Tipps freuen.
>  
> mein Ansatz:
>  arctan(y/x) --> y=-1 , x=0

>  
> also --> arctan(-1/0) -->?
>  
> was mache ich falsch ?

Hallo,
du verwendest blind irgendwelche Formeln.
z ist eine komplexe Zahl.
Welche Form magst du lieber?
z=a+i*b oder [mm] z=r(cos\phi +i*\sin \phi) [/mm] ?
Egal. Nimm dir deine Lieblingsform und quadriere sie.

Das Ergebnis deines Quadrierens ist wieder eine  komplexe Zahl (mit einem Real- und Imaginärteil) und soll j ergeben (konkreter: 0+1*j) bzw. soll
1*(cos270°+i*sin270°) ergeben.

Wie muss dann deine Zahl z gewesen sein, damit das Gewünschte rauskommt?
Gruß Abakus

>  
> gruß Alex


Bezug
        
Bezug
sämtliche Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Do 28.01.2010
Autor: fencheltee


> Berechnen Sie sämtliche Lösungen der Gleichung
>  
> [mm]z^2=-j[/mm]
>  
>
> Guten Abend, ich kann bei der Aufgabe [mm]\phi[/mm] nicht ausrechnen
> und würde mich über Tipps freuen.
>  
> mein Ansatz:
>  arctan(y/x) --> y=-1 , x=0

>  
> also --> arctan(-1/0) -->?
>  
> was mache ich falsch ?
>  
> gruß Alex

es lohnt sich evtl noch ein blick hierein, wenn du stur einsetzen in formeln magst:
http://de.wikipedia.org/wiki/Arkustangens_und_Arkuskotangens#Der_.E2.80.9EArkustangens.E2.80.9C_mit_zwei_Argumenten_.28atan2.29

[mm] \operatorname{atan2}(y,x) := \begin{cases} \arctan\frac{y}{x} & \mathrm{f\ddot ur}\ x > 0\\ \arctan\frac{y}{x} + \pi & \mathrm{f\ddot ur}\ x < 0,\ y \geq 0\\ \arctan\frac{y}{x} - \pi & \mathrm{f\ddot ur}\ x < 0,\ y < 0\\ +\pi/2 & \mathrm{f\ddot ur}\ x = 0,\ y > 0\\ -\pi/2 & \mathrm{f\ddot ur}\ x = 0,\ y < 0\\ 0 & \mathrm{f\ddot ur}\ x = 0,\ y = 0 \end{cases} [/mm]

ansonsten kann auch gern gewusst werden, dass [mm] -j=1*e^{-j\frac{\pi}{2}} [/mm]


gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]