matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisrichtungsableitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - richtungsableitungen
richtungsableitungen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

richtungsableitungen: frage bzw aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:01 Fr 15.04.2005
Autor: crowmat

Zu dem Thema hab ich direkt mehrere fragen:
1.) Wie zeig ich das eine richtungsableitung einer funktion an einer angegebenen stelle existiert? Wenn ich z.B. f(x,y,z):= [mm] z+ye^{x} [/mm] gegeben habe und ich einen vektor x mit (0,1,2) gegeben habe und in richtung des vektors w = (0,3,4) die richtungsableitung bilden soll?

2.)wie zeige ich folgendes: Wenn f: G  [mm] \subset \IR^{p} \to \IR [/mm] differenzierbar x [mm] \in [/mm] G und grad f(x) [mm] \not=0 [/mm] ist, existieren richtungen v, mit
  [mm] \bruch{\partial f}{\partial v}(x)=0. [/mm] wie liegen diese richtungen zur richtung des steilsten anstiegs?(senkrecht oder??)

        
Bezug
richtungsableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Fr 15.04.2005
Autor: Max

Hallo crowmat,

> Zu dem Thema hab ich direkt mehrere fragen:
> 1.) Wie zeig ich das eine richtungsableitung einer funktion
> an einer angegebenen stelle existiert? Wenn ich z.B.
> f(x,y,z):= [mm]z+ye^{x}[/mm] gegeben habe und ich einen vektor x mit
> (0,1,2) gegeben habe und in richtung des vektors w =
> (0,3,4) die richtungsableitung bilden soll?

[mm] $\frac{\partial f}{\partial w}(x)=\lim_{h \to 0}\frac{f(x+hw)-f(x)}{h}$ [/mm]

Oder du nutzt die partiellen Ableitungen [mm] $\frac{\partial f}{\partial x_i}$, [/mm] da ja [mm] $\frac{\partial f}{\partial w}(x)=\left< \grad f(x); w\right>$. [/mm]

>
> 2.)wie zeige ich folgendes: Wenn f: G  [mm]\subset \IR^{p} \to \IR[/mm]
> differenzierbar x [mm]\in[/mm] G und grad f(x) [mm]\not=0[/mm] ist,
> existieren richtungen v, mit
> [mm]\bruch{\partial f}{\partial v}(x)=0.[/mm] wie liegen diese
> richtungen zur richtung des steilsten anstiegs?(senkrecht
> oder??)

Wenn [mm] $\grad [/mm] f(x) [mm] \neq [/mm] 0$ gibt es Vektoren $v$ mit [mm] $\left<\grad f(x); v\right>=0$. [/mm] Also senkrecht.

Gruß Max

Bezug
                
Bezug
richtungsableitungen: beispiel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:12 Sa 16.04.2005
Autor: crowmat

also ehrlich gesagt weiß ich immer noch nicht ganz wie ich nun zeige das die richtungsableitungen existieren!Kann ich einfach sagen wenn ich partiellen ableitungen existieren, dann existiert auch die richtungsableitung?
KÖnnte mir jemand mal ein konkretes Beispiel dafür angeben?!

Bezug
                        
Bezug
richtungsableitungen: Mitgliedschaft beendet
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:57 Sa 16.04.2005
Autor: Marc

Mitgliedschaft des Users wegen Anlegen von Doppel-Accounts beendet.

Bezug
        
Bezug
richtungsableitungen: kann damit nix anfangen
Status: (Frage) beantwortet Status 
Datum: 19:48 Fr 15.04.2005
Autor: crowmat

mmmh also ehrlich gesagt weiß ich immer noch nicht wie ich den beweis jetzt machen soll!hast du noch einen tip für mich?

Bezug
                
Bezug
richtungsableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Fr 15.04.2005
Autor: Julius

Hallo crowmat!

Schau mal in den Quelltext von Max. Dann siehst du, dass ein paar Mal ein "grad" verloren gegangen ist.

Ist $grad(f(x)) [mm] \ne [/mm] 0$, dann hat [mm] $\langle [/mm] grad(f(x)) [mm] \rangle$ [/mm] ein $(p-1)$-dimensionales orthogonales Komplement.

Klar: $grad(f(x))$ spannt ja eine "Gerade" (einen eindimensionalen Unterraum) auf; und die hat im [mm] $\IR^p$ [/mm] ein $(p-1)$-dimensionales orthogonales Komplement.

Sei nun $v$ aus diesem orthogonalen Komplement. Dann gilt nach Definition:

[mm] $\langle [/mm] v, grad(f(x)) [mm] \rangle [/mm] =0$.

Weiterhin gilt aber nach Definition der Richtungsableitung

[mm] $\frac{\partial f}{\partial v}(x) [/mm] = [mm] \langle [/mm] v, grad(f(x)) [mm] \rangle$. [/mm]

So ist die Richtungsableitung nun eben mal definiert! :-)

Also folgt für alle $v$ aus dem orthogonalen Komplement von [mm] $\langle [/mm] grad(f(x)) [mm] \rangle$: [/mm]

[mm] $\frac{\partial f}{\partial v}=0$. [/mm]

Die Umkehrung gilt aber auch, weil wir nur Äquivalenzumformungen durchgeführt haben.

Gilt also:

[mm] $\frac{\partial f}{\partial v}=0$, [/mm]

so liegt $v$ im orthogonalen Komplement von [mm] $\langle [/mm] grad(f(x)) [mm] \rangle$. [/mm]

Da aber $grad(f(x))$ bekanntlich in die Richtung des steilsten Anstiegs zeigt (hattet ihr diesen Satz schon?), liegen alle $v [mm] \in \IR^p$ [/mm] mit [mm] $\frac{\partial f}{\partial v}=0$ [/mm] orthogonal zur Richtung des steilsten Anstiegs.

Viele Grüße
Julius





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]