matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenrichtige funktion?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - richtige funktion?
richtige funktion? < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

richtige funktion?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Di 16.11.2010
Autor: EdwinMoses

Aufgabe
Gegeben sei die Funktion

f: [mm] \IR^{2} [/mm] -> [mm] \IR [/mm] mit f(x,y) = [mm] 5x^{4} [/mm] + [mm] x^{2} [/mm] + [mm] 2y^{3} [/mm] + y

Zeigen  Sie, dass durch die Gleichung f(x,y) = 0 in einer Umgebung von [mm] x_{0} [/mm] = 0 implizit eine Funktion y= g(x) mit g(0) = 0 definiert wird, so dass f(x,g(x)) = 0 gilt.

Hallo,

wenn man [mm] x_{0} [/mm] in die funktion einsetzt bleibt ja [mm] f(x_{0},y) [/mm] = [mm] 2y^{3} [/mm] + y. Bedeutet das dann, dass g(x) = [mm] 2x^{3} [/mm] + x ist?  für g(0) würde es ja auch stimmen und wenn man alles wieder in die ausgangsfunktion mit [mm] x_{0} [/mm] einsetzt würde ja f(x,g(x)) = 0  auch gelten. Könnt ihr mir bitte sagen ob ich richtig oder total falsch liege? Hab das gefühl, dass es nicht so ganz leicht ist^^

        
Bezug
richtige funktion?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Di 16.11.2010
Autor: MathePower

Hallo EdwinMoses,

> Gegeben sei die Funktion
>  
> f: [mm]\IR^{2}[/mm] -> [mm]\IR[/mm] mit f(x,y) = [mm]5x^{4}[/mm] + [mm]x^{2}[/mm] + [mm]2y^{3}[/mm] + y
>  
> Zeigen  Sie, dass durch die Gleichung f(x,y) = 0 in einer
> Umgebung von [mm]x_{0}[/mm] = 0 implizit eine Funktion y= g(x) mit
> g(0) = 0 definiert wird, so dass f(x,g(x)) = 0 gilt.
>  Hallo,
>  
> wenn man [mm]x_{0}[/mm] in die funktion einsetzt bleibt ja
> [mm]f(x_{0},y)[/mm] = [mm]2y^{3}[/mm] + y. Bedeutet das dann, dass g(x) =
> [mm]2x^{3}[/mm] + x ist?  für g(0) würde es ja auch stimmen und


Nein, das bedeutet es nicht.


> wenn man alles wieder in die ausgangsfunktion mit [mm]x_{0}[/mm]
> einsetzt würde ja f(x,g(x)) = 0  auch gelten. Könnt ihr
> mir bitte sagen ob ich richtig oder total falsch liege? Hab
> das gefühl, dass es nicht so ganz leicht ist^^


Es ist zu zeigen, daß

[mm]5x^{4} + x^{2} +2y^{3} + y =0[/mm]

in einer Umgebung von [mm]x_{0}=0[/mm] nach y aufgelöst werden kann.


Differenziere dazu

[mm]5*x^{4}+x^{2}+2*\left(\ g\left(x\right) \ \right)^{3}+g\left(x\right)=0[/mm]

nach x und zeige, daß aus dieser
Gleichung g'(x) bestimmt werden kann, insbesondere g'(0).


Gruss
MathePower

Bezug
                
Bezug
richtige funktion?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Di 16.11.2010
Autor: EdwinMoses

okay vielen dank erstmal dafür!

wenn ich diese funktion nach x differenziere heißt es:

[mm] 20x^{3} [/mm] + 2x [mm] +6g(x)^{2} [/mm] + g'(x) = 0

dann löse ich nach g'(x) auf

g'(x) = [mm] -20x^{3} [/mm] - 2x [mm] -6g(x)^{2} [/mm]

aber ich bin leider noch ratlos wie ich nun genau auf g(x) komme

Bezug
                        
Bezug
richtige funktion?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Di 16.11.2010
Autor: MathePower

Hallo EdwinMoses,


> okay vielen dank erstmal dafür!
>  
> wenn ich diese funktion nach x differenziere heißt es:
>  
> [mm]20x^{3}[/mm] + 2x [mm]+6g(x)^{2}[/mm] + g'(x) = 0


Das muss doch so lauten;

[mm]20x^{3} + 2x +6g(x)^{2}*\red{g'(x)} + g'(x)=0[/mm]


>  
> dann löse ich nach g'(x) auf
>  
> g'(x) = [mm]-20x^{3}[/mm] - 2x [mm]-6g(x)^{2}[/mm]
>  
> aber ich bin leider noch ratlos wie ich nun genau auf g(x)
> komme


Die Funktion g(x) ist hier nicht explizit anzugeben.


Gruss
MathePower

Bezug
                                
Bezug
richtige funktion?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Di 16.11.2010
Autor: EdwinMoses

stimmt hab das nachdifferenzieren vergessen.

ja gut, es gibt aber noch eine weitere teilaufgabe wo man mit der funktion g(x) das taylorpolynom 2. grades aufstellen soll. Geht das dann auch ohne explizite funktion?

Bezug
                                        
Bezug
richtige funktion?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Di 16.11.2010
Autor: MathePower

Hallo EdwinMoses,

> stimmt hab das nachdifferenzieren vergessen.
>  
> ja gut, es gibt aber noch eine weitere teilaufgabe wo man
> mit der funktion g(x) das taylorpolynom 2. grades
> aufstellen soll. Geht das dann auch ohne explizite
> funktion?


Ja.


Gruss
MathePower

Bezug
                                                
Bezug
richtige funktion?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 Di 16.11.2010
Autor: EdwinMoses

okay vielen dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]