matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisresiduensatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - residuensatz
residuensatz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

residuensatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:12 Mo 31.03.2008
Autor: RudiRijkaard

Sei K der positiv orientierte Kreis um 0 mit Radius 2. Berechnen Sie das komplexe Kurvenintegral

[mm] \integral_{K}^{}{z / [(z - 1)^{2} (z + j)] dz} [/mm]

ich habe mit Hilfe des Residuensatzes das folgende Ergebnis bekommen:

[mm] \integral_{K}^{}{z / [(z - 1)^{2} (z + j)] dz} [/mm] = ... = [mm] \pi [/mm] ( 1 - j )

könnte das jemand vielleicht mal kurz nachrechnen und bestätigen oder auch nicht?




        
Bezug
residuensatz: Pole
Status: (Antwort) fertig Status 
Datum: 10:55 Mo 31.03.2008
Autor: Infinit

Hallo,
so ganz komme ich nicht auf Dein Ergebnis, ich bekomme sogar 0 dabei heraus, aber der Reihe nach:
Wir haben im Integrationsgebiet zwei Pole, ein doppelter Pol bei z =1 und ein einfacher Pol bei z = -j.
Die Funktion lautet
$$ [mm] \bruch{z}{(z-1)^2 \cdot (z+j)} [/mm] $$
Für die Berechnung des Residuums bei der doppelten Polstelle berechne ich den Grenzwert gegen 1 für die Ableitung des Ausdrucks
$$ [mm] \bruch{z}{z+j} [/mm] $$
Hier entsteht im Nenner ein Quadrat und man erhält [mm] \bruch{j}{(1+j)^2} [/mm] oder ausmultipliziert kommt 1/2 dabei heraus.
Für den einfachen Pol bei -j bekomme ich einen Ausdruck von [mm] \bruch{-j}{(-1-j)^2} [/mm] heraus, was ausmultipliziert -1/2 ergibt. Die Summe der Residuen ist also Null.
Ich hoffe, ich habe mich dabei nicht verhauen. Zeig doch mal Deinen Rechenweg, dann kommen wir schneller weiter.
Viele Grüße,
Infinit
Viele Grüße,
Infinit

Bezug
                
Bezug
residuensatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Mo 31.03.2008
Autor: RudiRijkaard

@ infinit: deine rechnung stimmt
ich hab bei der berechnung des residuums der doppelten polstelle ein "j" übersehen:)

hatte dann statt [mm] \bruch{j}{(1+j)^2} [/mm]
[mm] \bruch{1}{(1+j)^2} [/mm] dastehen und somit kam auch nicht das richtige ergebnis raus
"0" als ergebnis stimmt
danke nochmal fürs nachrechnen:)

hmm, funktionentheorie wurde bei uns in der vorlesung nur sehr kurz behandelt
in der klausur kommts trotzdem dran:)
mir fehlt irgendwie das verständnis dafür
wie müsste man denn bei der berechnung eines solchen kurvenintegrals vorgehen, wenn ein pol außerhalb des integrationsgebietes liegen würde
bzw. würde das überhaupt funktionieren?




Bezug
                        
Bezug
residuensatz: Vorgehensweise
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:08 Mo 31.03.2008
Autor: Infinit

Die Vorgehensweise ist die gleiche. Man kann ein Kurvenintegral natürlich auch im klassischen Sinne als Wegintegral lösen. Im Komplexen kann dies recht aufwendig werden und deswegen mutzt man so gerne den Residuensatz, denn hier muss man nur die Residuen der Polstellen bestimmen und diese aufaddieren. Liegen keine Pole innerhalb des geschlossenen Kurvenintegrals, so kann man das Ergebnis, nämlich 0, sofort hinschreiben. Pole außerhalb des Integrationsgebietes tragen nichts zum Ergebnis bei.
Viele Grüße,
Infinit

Bezug
                                
Bezug
residuensatz: thx
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Mo 31.03.2008
Autor: RudiRijkaard

alles klar, danke nochmals :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]