matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenrelative extremstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - relative extremstellen
relative extremstellen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

relative extremstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 So 18.10.2009
Autor: marc1001

Aufgabe
[mm] w=f_{x,y,z}=5x^2+6y^2+7z^2-4xy+4yz-10x+8y+14z-6 [/mm]

Bestimme alle Extremstellen und Werte

Also,

der ist ja im Prinzip das gleiche wie bei einer funktion [mm] f_{x,y} [/mm]

Ich erstelle die Partiellen Ableitungen.

Suche die Nullstellen für [mm] w_x, w_y, w_z [/mm]

Und wie genau mach ich jetzt weiter? Ich würde jetzt die

Matrix [mm] \pmat{ f_x_x & ...& f_x_z\\ ... & f_y_y & ... \\ ...&...&f_z_z} [/mm] aufstellen ganz wie bei  [mm] w=f_{x,y} [/mm]

Aber kann ich das überhaupt so machen? Ich finde in meinem Buch leider nichts über hinreichende Bedingungen von [mm] w=f_{x,y,z} [/mm]

        
Bezug
relative extremstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 So 18.10.2009
Autor: Arcesius

Hallo

> [mm]w=f_{x,y,z}=5x^2+6y^2+7z^2-4xy+4yz-10x+8y+14z-6[/mm]
>  
> Bestimme alle Extremstellen und Werte
>  Also,
>
> der ist ja im Prinzip das gleiche wie bei einer funktion
> [mm]f_{x,y}[/mm]
>  
> Ich erstelle die Partiellen Ableitungen.
>
> Suche die Nullstellen für [mm]w_x, w_y, w_z[/mm]
>

Gut, dann mach mal :)

> Und wie genau mach ich jetzt weiter? Ich würde jetzt die
>
> Matrix [mm]\pmat{ f_x_x & ...& f_x_z\\ ... & f_y_y & ... \\ ...&...&f_z_z}[/mm]
> aufstellen ganz wie bei  [mm]w=f_{x,y}[/mm]

Genau, einfach die zweite Ableitung berechnen (gleich wie für 2 Variabeln, haste richtig erkannt) und die Kritischen Stellen überprüfen! Jetzt ist es je nach dem einfach ein Tick anders beim überprüfen der Definitheit der Matrix. Mach einfach mal!

>  
> Aber kann ich das überhaupt so machen? Ich finde in meinem
> Buch leider nichts über hinreichende Bedingungen von
> [mm]w=f_{x,y,z}[/mm]  

Grüsse, Amaro

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]