matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigesrekursive formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis-Sonstiges" - rekursive formel
rekursive formel < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursive formel: beweis
Status: (Frage) beantwortet Status 
Datum: 18:53 Mo 18.10.2010
Autor: mathetuV

hallo alle zusammen ich habe folgende aufgabe zu lösen.

[mm] P_{n} [/mm] = [mm] \produkt_{i=2}^{n} [/mm] (1 - [mm] 1/k^{2}) [/mm]

ich muss dafür eine formel finden und sie  beweisen:

ich habe diese formel mir überlegt:

[mm] P_{n}= [/mm] (n+1)/2n ist das richtig?

danke für eure hilfe

        
Bezug
rekursive formel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Mo 18.10.2010
Autor: schachuzipus

Hallo,

> hallo alle zusammen ich habe folgende aufgabe zu lösen.
>
> [mm]P_{n}[/mm] = [mm]\produkt_{i=2}^{n}[/mm] (1 - [mm]1/k^{2})[/mm]
>
> ich muss dafür eine formel finden und sie beweisen:
>
> ich habe diese formel mir überlegt:
>
> [mm]P_{n}=[/mm] (n+1)/2n ist das richtig?

Jo, sieht gut aus, beweise deine Vermutung per vollst. Induktion nach n ...

>
> danke für eure hilfe

Gruß

schachuzipus

Bezug
                
Bezug
rekursive formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Mo 18.10.2010
Autor: mathetuV

(IA) n= 2 ......
(IS)n->n+1
[mm] \produkt_{i=2}^{n+1} (1-1/k_{2}) [/mm] = (1+(n+1))/(2(n+1))

[mm] \produkt_{i=2}^{n} (1-1/k_{2}) [/mm] * [mm] (1-1/(n+1)^{2})=.... [/mm] ist das richtig?




Bezug
                        
Bezug
rekursive formel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Mo 18.10.2010
Autor: reverend

Halle mathetuV,

ist was richtig? Da ist ja noch nicht viel passiert, außer dass Du schlampig mit den Variablennamen umgehst und das Quadrat zum Index umfunktionierst:

> (IA) n= 2 ......

Ja, das ist der erste Schritt. Deine Formel soll ab n=2 gelten. Tut sie's?

>  (IS)n->n+1
>  [mm]\produkt_{i=2}^{n+1} (1-1/k_{2})[/mm] = (1+(n+1))/(2(n+1))

Brüche gehen hier so: \bruch{1+(n+1)}{2(n+1)} ergibt [mm] \bruch{1+(n+1)}{2(n+1)} [/mm]
Das das Quadrat keins mehr ist, schrieb ich schon.

> [mm]\produkt_{i=2}^{n} (1-1/k_{2})[/mm] * [mm](1-1/(n+1)^{2})=....[/mm] ist
> das richtig?

Ja, sonst schon. Nur rechnen müsstest Du schon noch.

Grüße
reverend


Bezug
                                
Bezug
rekursive formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mo 18.10.2010
Autor: mathetuV

irgendwie klappts bei mir nicht, ich rechne die ganze zeit rum

Bezug
                                        
Bezug
rekursive formel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Mo 18.10.2010
Autor: schachuzipus

Hallo nochmal,

der Induktionsanfang passt, oder? Davon gehe ich mal aus.

Nun der Induktionsschritt [mm]n\to n+1[/mm]:

Sei [mm]n\in\IN, n>2[/mm] beliebig aber fest und gelte [mm]\prod\limits_{k=2}^{n}\left(1-\frac{1}{k^2}\right)=\frac{n+1}{2n}[/mm]

Dann ist zu zeigen, dass die Beh. gefälligst auch für [mm]\red{n+1}[/mm] gilt, dass also [mm]\prod\limits_{k=2}^{\red{n+1}}\left(1-\frac{1}{k^2}\right)=\frac{\red{(n+1)}+1}{2\red{(n+1)}}=\frac{n+2}{2(n+1)}[/mm] gilt

Dazu nimm die linke Seite her und forme mithilfe der Induktionsvoraussetzung um:

[mm] $\prod\limits_{k=2}^{n+1}\left(1-\frac{1}{k^2}\right) [/mm] \ = \ [mm] \left[ \ \prod\limits_{k=2}^{n}\left(1-\frac{1}{k^2}\right) \ \right] [/mm] \ [mm] \cdot{}\left(1-\frac{1}{(n+1)^2}\right)$ [/mm]

Nun wende auf das linke Produkt die Induktionsvoraussetzung an, der Rest ist einfache Bruchrechnung.

Zeige mal, wie du zuende rechnest ..

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]