matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionrekursive Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - rekursive Folge
rekursive Folge < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursive Folge: Aufgabe 28
Status: (Frage) beantwortet Status 
Datum: 15:07 Mo 22.01.2007
Autor: Trapt_ka

ich kann leider die aufgabe im anhang nicht nachvollziehen vor allem gelint mir dei vollständige induktion nicht. dies ist eigentlich das einzige was ich nicht verstehe da keine lösung angegeben ist und ich leider gar nicht drauf komme wie ih die szu lösen bzw zu berenchnen habe.
wäre foh wenn ich eine beispielrechnung bekommen könnte
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Mo 22.01.2007
Autor: Volker2

Hallo,

zunächst kannst Du mal versuchen den Grenzwert, falls er denn existiert, zu erraten, damit die ganze Aufgabe etwas konkreter wird. Angenommen also [mm] a_\infty [/mm] ist ein Grenzwert zu einem STartwert [mm] a_0. [/mm] Dann gilt doch

[mm] a_\infty=a_{\infty+1}=\frac{1}{5}(a_\infty^2+4) [/mm]

oder

[mm] a_\infty^2-5a_\infty+4=0 [/mm]

d.h. [mm] a_\infty=\frac{1}{2}(5\pm [/mm] 3). Falls also der Grenzwert zu gegebenem [mm] a_0 [/mm] existiert, so ist er entweder 1 oder 4. Insbesondere ist für [mm] a_0=4 [/mm] die Folge konstant gleich 4 und da ist alles klar. Für [mm] a_0=2 [/mm] ist der angegebene Tipp zu verwenden. Damit weißt Du, dass die Folge monoton fällt. Da sie trivialerweise durch 0 von unten beschränkt ist, muss sie auch konvergieren und zwar gegen einen Grenzwert, der zwischen 0 und 2 liegt. D.h. für [mm] a_0=2 [/mm] konvergiert die Folge gegen 1, denn das war ja der einzige mögliche Grenzwert zwischen 0 und 2, wie wir ganz am Anfang gesehen hatten.

Volker



Bezug
                
Bezug
rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Di 23.01.2007
Autor: Trapt_ka

ja so weit war es mir klar aber ich komm einfach nicht auf die vollständige induktion die in der aufgabe angesprochen ist. des weitern ist den diese vollständige induktion von beduetung oder eher nicht.
wäre net wenn mir einer die vollständige induktion mal skizzieren könnte
da ich mit  V.I. en grosses Problem habe

Bezug
                        
Bezug
rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Mi 24.01.2007
Autor: moudi

Hallo Traptka

Es steht ja schon fast alles hier. Sei [mm] $a_0=2$ [/mm] und wir zeigen mit Induktion nach n, dass [mm] $a_{n}
Induktionsverankerung: n=1 Es gilt [mm] $a_1=8/5<2=a_0$ [/mm]

Induktionsschritt: Die Behautpung gelte für n, darf also annehmen, dass [mm] $a_{n} Jetzt muss ich die Behauptung für n+1 zeigen, ich muss also zeigen, dass dann auch [mm] $a_{n+1}
Aus dem Text entnimmt man [mm] $a_{n+1}-a_{n}=\frac15 (a_{n}-a_{n-1})(a_{n}+a_{n-1})$. [/mm]
Wegen der Induktionsvoraussetzung ist der erste Fakor rechts negativ, während der zweite Faktor positiv ist, daher ist auch die linke Seite negativ, was zu beweisen war.

mfG Moudi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]