matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFormale Sprachenreguläre Sprache?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Formale Sprachen" - reguläre Sprache?
reguläre Sprache? < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reguläre Sprache?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:43 Di 20.11.2007
Autor: GaLiun

Aufgabe
$L = [mm] \{ x \in \{ a,b,c\}^{\*}$ : Die Anzahl der a in x ist gleich der Anzahl b in x $\}$ [/mm] Ist dieser Ausdruck regulär?

Hallo
Wenn ich mich richtig erinnere, dann ist die Sprache wohl regulär. Aus Endlichkeit folgt reguläre Sprache. Anzahl a = Anzahl b deutet darauf hin, dass es endlich ist, aber das c könnte unendlich mal vorkommen.
Wie kann ich hier nachweisen, ob die Sprache regulär oder nicht regulär ist?

Danke schon mal für eure Hilfe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
reguläre Sprache?: Antwort
Status: (Antwort) fertig Status 
Datum: 01:41 Mi 21.11.2007
Autor: Martin243

Hallo und [willkommenvh],

> Wenn ich mich richtig erinnere, dann ist die Sprache wohl regulär. Aus Endlichkeit folgt reguläre Sprache. Anzahl a = Anzahl b deutet darauf hin, dass es endlich ist, aber das c könnte unendlich mal vorkommen.

Nein. Es ist gar nicht klar, um welche Endichkeit es sich handelt.
Ein Wort hat immer eine endliche Länge. Die Länge kann beliebig groß sein, aber endlich. Insofern funktioniert dein Argument hier nicht.
Das Problem hier ist die gleiche Häufigkeit. So etwas deutet auf (mindestens) kontextfreie Sprachen.

> Wie kann ich hier nachweisen, ob die Sprache regulär oder nicht regulär ist?

Wenn du nachweisen willst, dass die Sprache regulär ist, dann präsentiere einfach eine reguläre Grammatik, die diese Sprache erzeugt, oder einen endlichen Automaten, der Wörter dieser Sprache akzeptiert.
Zum Beweis des Gegenteils bedienst du dich am besten des unausweichlichen []Pumping-Lemmas für reguläre Sprachen.


Gruß
Martin

Bezug
                
Bezug
reguläre Sprache?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Mi 21.11.2007
Autor: GaLiun

Aufgabe
$ L = [mm] \{ x \in \{ a,b,c\}^{*} $ : Die Anzahl der a in x ist gleich der Anzahl b in x $ \} [/mm] $ Ist dieser Ausdruck regulär?

Hallo.Danke für das Willkommensschild und für dien Hinweis aufs Pumpinglemma,was ich vollkommen übersehen hab weil ich da mindestens ein Problem habe.Es kann folgende Fälle auftreten
aabb
abab
baba
bbaa
ab
ba
...

Jetzt ist beim Beispiel bei Wikipedia gegeben L = [mm] \{ a^mb^m | m \ge 1 \} [/mm]
Dann wird gleich aufgeschrieben x = uvw = [mm] a^nb^n. [/mm]
Diese Formulierung [mm] a^nb^n [/mm] habe ich ja nicht und deswegen kriege ich nichts gebacken
(a*b*)*
muss ich damit arbeiten?Diese Formluierung hätte ich noch in keinem Beispiel gesehen.Deswegen weiß ich auch in diesem Fall nicht weiter.

Hilfst du mir noch mal bitte?


Gruß

> Hallo und [willkommenvh],
>  
> > Wenn ich mich richtig erinnere, dann ist die Sprache wohl
> regulär. Aus Endlichkeit folgt reguläre Sprache. Anzahl a =
> Anzahl b deutet darauf hin, dass es endlich ist, aber das c
> könnte unendlich mal vorkommen.
> Nein. Es ist gar nicht klar, um welche Endichkeit es sich
> handelt.
>  Ein Wort hat immer eine endliche Länge. Die Länge kann
> beliebig groß sein, aber endlich. Insofern funktioniert
> dein Argument hier nicht.
>  Das Problem hier ist die gleiche Häufigkeit. So etwas
> deutet auf (mindestens) kontextfreie Sprachen.
>  
> > Wie kann ich hier nachweisen, ob die Sprache regulär oder
> nicht regulär ist?
> Wenn du nachweisen willst, dass die Sprache regulär ist,
> dann präsentiere einfach eine reguläre Grammatik, die diese
> Sprache erzeugt, oder einen endlichen Automaten, der Wörter
> dieser Sprache akzeptiert.
>  Zum Beweis des Gegenteils bedienst du dich am besten des
> unausweichlichen
> []Pumping-Lemmas für reguläre Sprachen.
>  
>
> Gruß
>  Martin


Bezug
                        
Bezug
reguläre Sprache?: Antwort
Status: (Antwort) fertig Status 
Datum: 01:47 Do 22.11.2007
Autor: Martin243

Hallo,

das ist nur ein bisschen verwirrender mit dem zusätzlichen c, aber nicht weiter tragisch. Man kann es eigentlich genauso machen (wenn die Sprache ohne das c schon nicht regulär ist, dann erst recht mit c).

Betrachten wir also für ein festes $n$ das Wor [mm] $a^ncb^n$. [/mm]
Wir zerlegen es und stellen fest, dass nach 2. gilt: $uv = [mm] a^{n'}$ [/mm] mit $n' [mm] \le [/mm] n$. Also muss auch $v$ aus mindestens einem $a$ bestehen (nennen wir diese Zahl $n''$).
Nun müssten wir das Wort nach 3. in der Mitte beliebig mit $v$s vollpumpen (Pumping-Lemma!) können. Dann erhalten wir aber für beispielsweise $n$ zusätzliche $v$s:
$x' = [mm] uv^{n}w [/mm] = [mm] a^{n'-n''}a^{n''+n}a^{n-n'}cb^n [/mm] = [mm] a^{2n}cb^n \notin [/mm] L$

Ist klar, oder?


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]