matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenreelle normalformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - reelle normalformen
reelle normalformen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reelle normalformen: frage zur aufgabenstellung
Status: (Frage) überfällig Status 
Datum: 15:12 So 24.01.2010
Autor: cmueller

Aufgabe
Wir betrachten das zur skalaren Gleichung
$x''-2ax'-bx=0$
äquivalente system
$x'=y$
$y'=2ay+bx$
mit reellen parametern a,b.

a) Markieren Sie in der a-b-Ebene alle Flächen, in denen dieses System einen stabilen/instabilen Knoten, einen Sattelpunkt oder einen stabilen/instabilen Strudel besitzt (auf die Untersuchung der LInien, die verschiedene Fälle voneinander trennen, können Sie hier verzichten.)

b) Eine der Übergangslinien ist die Parabel [mm] b=-a^{2}. [/mm] Welches Verhaöten hat das System hier in der Nähe des Gleichgewichts (0,0) (in Abhängigkeit von a)?

Hallo zusammen,

also wenn ich das richtig sehe, ist die gleichung x''-2ax'-bx=0 abgesehen von den Vorzeichen die schwingungsgleichung (hatten wir als Bsp in der vorlesung).

habe mich daran etwas orientiert und komme, wenn ich das charakteristische polynom ausrechne, zu
[mm] \lambda_{1,2}=a\pm\wurzel{a^{2}+b} [/mm]
so dann habe ich mir die möglichen fälle angeschaut, d.h.
[mm] a^{2}\ge [/mm] b
a>0 b>0 --> instabiler knoten
a<0 b>0 --> stabiler knoten

[mm] a^{2}< [/mm] b
b<0 --> stabiler Strudel
b=0 --> stabiler wirbel
b>0 --> instabilder Strudel

ist das richtig?
und reicht es laut der aufgaben stellung jetzt wenn ich mit ein 2-dimensionales koordinatensystem zeichne und in jeden quadranten schreibe was dort ist? oder wie ist das gemeint?

und zur b) habe ich überlegt, wenn ich die EW anschaue und [mm] b=-a^{2} [/mm] einsetz komme ich auf [mm] \lambda{1,2}=a [/mm] und damit auf
[mm] u_{1}(t)=e^{at} [/mm] und [mm] u_{2}(t)=te^{at} [/mm]
und dann hab ich überlegt, dass für [mm] a\le [/mm] 0 der Realteil von [mm] \lamda [/mm] auch [mm] \le [/mm] 0 ist also stabil und der limes t->unendlich gegen 0 läuft
und umgekehrt für a>0 ist der REalteil auch >0 und der limes läuft gegen unendlich.

ist das das was die wissen wollen?
oder bin ich völlig auf dem falschen dampfer?

lg cmueller

        
Bezug
reelle normalformen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 26.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]