matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrareelle Polynome/Vektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - reelle Polynome/Vektorraum
reelle Polynome/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reelle Polynome/Vektorraum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:50 Mi 15.11.2006
Autor: Hamsi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo an alle!

Bei der Bearbeitung meines Übungsblattes, bin ich auf eine Aufgabe gestoßen, die mir Kopfzerbrechen bereitet, nicht aber weil ich mich so viel damit beschäftigt habe, sondern eher da ich keine Ahnung habe wie ich mir dieses Problem vorzustellen habe.

Meine Frage:"Wie kann ich eine Menge der reellen Polynome zu einem Vektorraum machen?". Wie soll ich mir das bildlich vorstellen?

MFG Hamsi

        
Bezug
reelle Polynome/Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Mi 15.11.2006
Autor: Zwerglein

Hi, Hamsi,

Grundsätzliches zum Begriff "Vektorraum" ist Dir aber schon bekannt?
Wenn nicht, schau mal hier:
[]http://de.wikipedia.org/wiki/Vektorraum

Hier findest Du auch als Beispiel den "Vektorraum der Polynome von höchstens Grad 4." Dieser hat die Dimension 5.
Ganz analog kann man Vektorräume aus der Menge der Polynome festlegen durch die Angabe:
"Vektorraum der Polynome von höchstens Grad n." Dimension ist dann n+1.

mfG!
Zwerglein


Bezug
                
Bezug
reelle Polynome/Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Mi 15.11.2006
Autor: Hamsi

Vielen Dank Zwerglein, hat mir sehr geholfen, Wiki ist wirklich gut.

Kann ich die Basis meines Vektorraumes, als meinen Vektorraum selbst sehen, also speziell in diesem Fall: Basis = {Xi | i = 1,...,n+1}
folgt dann daraus das mein erzeugter Vektorraum V = {Xi | i = 1,...,n+1}
ist?

Kann mir vielleicht irgendjemand verraten was ich unter [mm] Abb(\IR,\IR) [/mm] verstehen soll?

Bezug
                        
Bezug
reelle Polynome/Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Mi 15.11.2006
Autor: Zwerglein

Hi, Hamsi,

> Kann ich die Basis meines Vektorraumes, als meinen
> Vektorraum selbst sehen,

Basis [mm] \not= [/mm] Vektorraum!

> also speziell in diesem Fall:
> Basis = {Xi | i = 1,...,n+1}

Du meinstwohl eher:
[mm] \{x^{i} | i = 0; ... ; n \} [/mm] = [mm] \{1; x; x^{2}; ... ; x^{n} \} [/mm]

>  folgt dann daraus das mein erzeugter Vektorraum V = {Xi |
> i = 1,...,n+1}
>  ist?

V = [mm] \{a_{0} + a_{1}x + a_{2}x^{2}+ ... + a_{n}x^{n} | a_{i} \in \IR \} [/mm]

> Kann mir vielleicht irgendjemand verraten was ich unter
> [mm]Abb(\IR,\IR)[/mm] verstehen soll?

Tut mir leid: Die Schreibweise kenn' ich nicht. Hat aber sicher etwas mit reellen Abbildungen zu tun!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]