matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesreelle Nullstelle und Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - reelle Nullstelle und Polynome
reelle Nullstelle und Polynome < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reelle Nullstelle und Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:27 Fr 02.11.2007
Autor: blueeyes

Aufgabe
(a) Sei [mm] n\in\IN [/mm] gerade. Zeigen Sie, dass p(x)= 1+x+ ... [mm] +x^n [/mm] keine reelle Nullstelle  besitzt.

(b) Sei p ein Polynom vom Grad [mm] n\in\IN [/mm] mit p(x) ≠ 0 für alle [mm] x\in\IR. [/mm] Zeigen Sie, dass [mm] f:\IR->\IR, [/mm] f(x):= [mm] \left( \bruch{1}{p(x)} \right) [/mm]  kein Polynom sein kann.

könnte mir jemand von euch beim Lösen bitte ein wenig behilflich sein.
Zu a) dort ist es ersichtlich, dass p(x) keine reellen Nullstellen besitzen kann,da permanent Elemente addiert werden und dies folglich nicht zu einer Nullstelle führen kann. Nur wie kann man das beweisen?
Zu b) fehlt mir der Ansatz.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
reelle Nullstelle und Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Fr 02.11.2007
Autor: Blech


> (a) Sei [mm]n\in\IN[/mm] gerade. Zeigen Sie, dass p(x)= 1+x+ ...
> [mm]+x^n[/mm] keine reelle Nullstelle  besitzt.
>  
> (b) Sei p ein Polynom vom Grad [mm]n\in\IN[/mm] mit p(x) ≠ 0
> für alle [mm]x\in\IR.[/mm] Zeigen Sie, dass [mm]f:\IR->\IR,[/mm] f(x):=
> [mm]\left( \bruch{1}{p(x)} \right)[/mm]  kein Polynom sein kann.
>  könnte mir jemand von euch beim Lösen bitte ein wenig
> behilflich sein.
>  Zu a) dort ist es ersichtlich, dass p(x) keine reellen
> Nullstellen besitzen kann,da permanent Elemente addiert
> werden

n=1 [mm] $\Rightarrow$ [/mm] p(-1)=0

Warum geht das bei geradem n nicht? Wie könnte man p(x) abschätzen (bzw. alle [mm] $x^i$ [/mm] mit ungeradem i), um sicher zu gehen, daß es nicht negativ ist?

>  Zu b) fehlt mir der Ansatz.

Was ist denn eure Definition eines Polynoms, was sind seine Eigenschaften, welchen Grad müßte denn f haben, wenn es eins wäre?
  


Bezug
                
Bezug
reelle Nullstelle und Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 Mo 05.11.2007
Autor: H8U

Sei n [mm] \in \IN; a_0,a_1,... a_n \in \IR [/mm] mit [mm] a_n \not= [/mm] 0. Dann heißt die Funktion p: [mm] \IR \to \IR [/mm] , [mm] p(x)=a_0+a_1x+a_2 x^2+...+a_n x^4 [/mm] Polynom vom Grad n. Ist n=0 und [mm] a_0 [/mm] =0, so heißt
p(x)=0 , x [mm] \in \IR [/mm] Nullpolynom n. Man ordnet p den Grad -1 zu.

Das ist die Definition von Polynomen. Allerdings hab ich auch nicht wirklich einen Lösungsvorschlag.
Kann nicht jemand blueeye noch nen Tipp geben? Bis jetzt steht nix hilfreiches da.

Bezug
                        
Bezug
reelle Nullstelle und Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 Di 06.11.2007
Autor: angela.h.b.


> Sei n [mm]\in \IN; a_0,a_1,... a_n \in \IR[/mm] mit [mm]a_n \not=[/mm] 0.
> Dann heißt die Funktion p: [mm]\IR \to \IR[/mm] , [mm]p(x)=a_0+a_1x+a_2 x^2+...+a_n x^4[/mm]
> Polynom vom Grad n. Ist n=0 und [mm]a_0[/mm] =0, so heißt
> p(x)=0 , x [mm]\in \IR[/mm] Nullpolynom n. Man ordnet p den Grad -1
> zu.
>  
> Das ist die Definition von Polynomen. Allerdings hab ich
> auch nicht wirklich einen Lösungsvorschlag.
> Kann nicht jemand blueeye noch nen Tipp geben? Bis jetzt
> steht nix hilfreiches da.

Hallo,

zu a) man könnte hier mithilfe der endl. geometrischen Reihe überlegen.

zu b) Starte mit [mm] \bruch{1}{p(x)}=q(x) [/mm]  und führe Gradüberlegungen durch.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]