matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenreelle Lösung für eine Diffgl.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - reelle Lösung für eine Diffgl.
reelle Lösung für eine Diffgl. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reelle Lösung für eine Diffgl.: Vorgehensweise?
Status: (Frage) beantwortet Status 
Datum: 17:20 So 30.09.2007
Autor: Sesquilinearform

Aufgabe
Für jede der folgenden Differentialgleichungen beschreiben Sie die allgemeine reelle Lösung:

(a) [mm] y'' + y' +y = 0 [/mm]

(b) [mm] y''' -6y'' +9y' = 0 [/mm]

Ich weiß, dass ich hier wieder irgendwas in seine Linearfaktoren zerlegen muss indem man [mm] \bruch {d}{dx} = D [/mm] definiert und dann [mm] (D^2 + D +1)y =0 [/mm] daraus macht.

Kann mir jemand ne Schritt für Schritt Anleitung geben wie ich jetzt weiter machen muss? Denn das Beispiel aus meinem Skript verstehe ich nicht. Weder die Bestimmung der komplexen noch die reellen Lösung. Beides wär super...

        
Bezug
reelle Lösung für eine Diffgl.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 So 30.09.2007
Autor: angela.h.b.


> Für jede der folgenden Differentialgleichungen beschreiben
> Sie die allgemeine reelle Lösung:
>  
> (a) [mm]y'' + y' +y = 0 [mm][/mm][/mm]

(b) [mm]y''' -6y'' +9y' = 0 [mm][/mm][/mm]

>  Ich weiß, dass ich hier wieder irgendwas in seine Linearfaktoren zerlegen muss indem man [mm]\bruch {d}{dx} = D[/mm] definiert und dann [mm](D^2 + D +1)y =0[/mm] daraus macht.[/mm][/mm]
> [mm][mm] [/mm][/mm]
> [mm][mm]Kann mir jemand ne Schritt für Schritt Anleitung geben wie ich jetzt weiter machen muss? Denn das Beispiel aus meinem Skript verstehe ich nicht. Weder die Bestimmung der komplexen noch die reellen Lösung. Beides wär super... [/mm][/mm]

Hallo,

nun bestimmst Du die beiden Nullstellen [mm] \lambda_1 [/mm] und [mm] \lambda_2 [/mm] von [mm] D^2 [/mm] + D +1.

Es bilden dann die Funktionen [mm] \phi_i(x):=e^{\lambda_ix} [/mm] ein Fundamentalsystem von Lösungen.

Falls die [mm] \phi_i [/mm] komplex sind (was hier der Fall ist), kann man sie anschließend zu einem reellen Fundamentalsystem linearkombinieren. Das können wir ja tun, wenn die [mm] \phi_i [/mm] stehen.

Gruß v. Angela




Bezug
        
Bezug
reelle Lösung für eine Diffgl.: Lösung
Status: (Antwort) fertig Status 
Datum: 11:39 Mo 15.10.2007
Autor: MarthaLudwig

Hallo Sesquilinearform!


zu a)

Löse folgende Gleichung:


[mm] u^2+u+1=0 [/mm]

Falls beide Lösungen gleich sind:y=c1*exp(u*x)+c2*x*exp(u*x);
falls  beide Lösungen komplex sind:y=c1*exp(Realteilvonu1*x)+c2*exp(Imaginärteilvonu1*x);
sonst:y=c1*exp(u1*x)+c2*exp(u2*x).

b) geht analog.

Hoffe,daß ich helfen konnte.


Grüße Martha.






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]