matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenenrechtwinkliges Dreieck
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - rechtwinkliges Dreieck
rechtwinkliges Dreieck < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rechtwinkliges Dreieck: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:00 So 16.05.2010
Autor: Powerranger

Aufgabe
Gegeben sind die Gerade g: [mm] \vec{x}= \vektor{4 \\ 1 \\1} [/mm] + t [mm] \vektor{0 \\ 2\\ 1} [/mm] und die Punkte A (6/0/-2) und B(4/3/5). Bestimmen sie auf g einen Punkt C so. dass das Dreieck ABC bei C einen rechten Winkel hat.

Guten Abend!

Bei dieser Aufgabe komme ich an einer Stelle nicht weiter und zwar:

ich habe das Skalarprodukt von [mm] \overrightarrow{AC} [/mm] * [mm] \overrightarrow{BC}=0 [/mm] gebildet.
Danach komme ich auf eine Gleichung mit 3 unbekannten Variablen

[mm] c_{1}^2-10c_{1}+c_{2}^2-3c_{2}+c_{3}^2-3c_{3}+14=0 [/mm]

wie muss ich jetzt weiter rechnen?

Gruß
Powerranger

        
Bezug
rechtwinkliges Dreieck: Geradengleichung verwenden
Status: (Antwort) fertig Status 
Datum: 22:03 So 16.05.2010
Autor: Loddar

Hallo Powerranger!


Die Idee mit dem Skalarprodukt ist schon sehr gut. Aber was hast Du denn dann für den Punkt $C_$ eingesetzt?

Setze hier die Koordinaten aus der gegebenen Gerade ein mit:
[mm] $$\vec{x}_C [/mm] \ = \ [mm] \vektor{4 \\ 1+2t\\ 1+t}$$ [/mm]

Damit erhältst Du eine Bestimmungsgleichung mit nur noch einer Unbeannten: $t_$ .


Gruß
Loddar


Bezug
                
Bezug
rechtwinkliges Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 So 16.05.2010
Autor: Powerranger

Hallo

Achja stimmt :)
Ich habe für C keine bestimmte zahl eingesetzt, sondern c1,c2 und c3.
Bei dem [mm] \overrightarrow{AC} [/mm] zum Beispiel:

[mm] \vektor{c1-6 \\ c2 \\ c3+2} [/mm]

Aus diesem Grund bin ich auch auf eine Gleichung mit 3 Variablen gekommen.
Aber nun muss ich doch für c1 zum beispiel immer 4 einsetzen,für c2 1+2t, oder?

Bezug
                        
Bezug
rechtwinkliges Dreieck: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 22:11 So 16.05.2010
Autor: Loddar

Hallo Powerranger!


> Aber nun muss ich doch für c1 zum beispiel immer 4
> einsetzen,für c2 1+2t, oder?

[ok] Yep!


Gruß
Loddar


Bezug
                                
Bezug
rechtwinkliges Dreieck: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:12 So 16.05.2010
Autor: Powerranger

Dankeschön

Gut, dass es euch gibt :):)

Schönen Abend noch!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]