matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale Funktionenrationale funktionsschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - rationale funktionsschar
rationale funktionsschar < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rationale funktionsschar: korrektur
Status: (Frage) beantwortet Status 
Datum: 21:40 Do 30.08.2007
Autor: defjam123

Aufgabe
f(x)=x³-(a+1)x²+(2a-a²)x+a³-a²

nullstellen berechen, extrema, ortsgerade, wendupunkt

f(x)=x³-(a+1)x²+(2a-a²)x+a³-a²

komm bei der polynomdivision nicht weiter
d.h

n1=a

f(x)=x³-ax-x²+2ax-a²x+a³-a²

   x³-ax-x²+2ax-a²x+a³-a² / (x-a) =x²-x+a-a²??  = x²-x-a
-(x³-ax²)
         -x²+2ax
       -(-x²+ax)
                ax-a²x
              -(ax+a²)
                    -a²x+a²
                   - -(a²x-a³)
                               a²-a³ +a³-a²= 0

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.onlinemathe.de]
                  


        
Bezug
rationale funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Do 30.08.2007
Autor: Steffi21

Hallo,

deine 1. Nullstelle ist korrekt, Klammern für die Polynomdivision nicht ausmultiplizieren,

   [mm] \{x^{3}-(a+1)x^{2}+(2a-a^{2})x+a^{3}-a^{2}\}:\{x-a\}=x^{2}-x+a-a^{2} [/mm]
  [mm] -\{x^{2}-ax^{2}\} [/mm]
   ________
       [mm] -x^{2} [/mm]
      [mm] -\{-x^{2}+ax\} [/mm]
       __________
             [mm] ax-a^{2}x [/mm]
            [mm] -\{ax-a^{2}x-a^{2}+a^{3}\} [/mm]
               _____________
                           0

Deine Term [mm] x^{2}-x+a-a^{2} [/mm] ist ebenfalls korrekt. Du darfst aber NICHT zusammenfassen, wie Du es getan hast [mm] a-a^{2}\not=-a. [/mm]
Benutze jetzt die p-q-Formel: p=-1; [mm] q=a-a^{2} [/mm]

[mm] x_1_2=\bruch{1}{2}\pm\wurzel{\bruch{1}{4}-a+a^{2}} [/mm]

[mm] x_1_2=\bruch{1}{2}\pm\wurzel{a^{2}-a+\bruch{1}{4}} [/mm] unter der wurzel steht ein Binom, erkennst Du es?

Jetzt schaffst Du es.

Steffi


Bezug
                
Bezug
rationale funktionsschar: weiterrech´nen
Status: (Frage) beantwortet Status 
Datum: 22:36 Do 30.08.2007
Autor: defjam123

Aufgabe
nullstelle

hab jetzt augrechnet

[mm] \bruch{1}{2}\pm \wurzel{\bruch{(1-2a)²}{4}} [/mm]

n2=-2a
n3=-a

Bezug
                        
Bezug
rationale funktionsschar: extremstelllen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:40 Do 30.08.2007
Autor: defjam123

die nullstellen sind doch richtig von mir ausgerechnet?
dann zu den extremstellen

f'(x)=0

3x²-2ax-2x+2a=0

wie rechne ich hier weiter? komm voll nicht klar? bitte helfen

Bezug
                        
Bezug
rationale funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Do 30.08.2007
Autor: leduart

Hallo
> nullstelle
>  hab jetzt augrechnet
>  
> [mm]\bruch{1}{2}\pm \wurzel{\bruch{(1-2a)²}{4}}[/mm]

richtig
aber n2=1/2+(1/2-a )=?
n3=1/2-(1/2-a)=?
das kannst du doch besser als diene Ergebnisse,
ausserdem kann man sowas durch einsetzen leicht überprüfen!
Gruss leduart


Bezug
                                
Bezug
rationale funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Do 30.08.2007
Autor: defjam123

manno, ich hab nochmal nachgerechnet aber kommt wieder bei mir
n2= 2a
n3= -a

ich verzweifele, wenn die nullstellen falsch sind kann mir das detailiert einer vorrechnen

bei der berechnung von den extremstellen komm ich ebenso nicht weiter

0=3x²-2ax-2x+2a-a²

wie kann ich hier vorgehen?

Bezug
                                        
Bezug
rationale funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 01:41 Fr 31.08.2007
Autor: leduart

Hallo
Du hattest dich richtig
[mm] x=1/2\pm\wurzel{(1-2a)^2/4} [/mm]
damit n1=1/2+(1-2a)/2=1/2+1/2-a=1-a
und n2=1/2-(1-2a)/2=1/2-1/2+a=a
Du hast einfach ne normale quadratische Gleichung, Teil durch 3 und verwend die pq-Formel, oder ohne 3 teilen die abc Formel, ungewöhnlich ist nur dass da nicht Zahl*x steht sondern -2*(a+1)*x dein p ist also -2*(a+1)/3
ebenso dein q [mm] =(2a-a^2)/3 [/mm]
mit den Ausdrücken rechnes du wie gewohnt bei der Lösung von quadr. Gleichungen.
Gruss leduart

Bezug
                        
Bezug
rationale funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 07:17 Fr 31.08.2007
Autor: Steffi21

Hallo, mache ich an meiner letzten Eintragung weiter:

[mm] x_1_2=\bruch{1}{2}\pm\wurzel{a^{2}-a+\bruch{1}{4}} [/mm]

[mm] x_1_2=\bruch{1}{2}\pm\wurzel{(a-\bruch{1}{2})^{2}} [/mm]

[mm] x_1_2=\bruch{1}{2}\pm(a-\bruch{1}{2}) [/mm]

[mm] x_1=\bruch{1}{2}+(a-\bruch{1}{2})=\bruch{1}{2}+a-\bruch{1}{2}=a [/mm]

[mm] x_2=\bruch{1}{2}-(a-\bruch{1}{2})=\bruch{1}{2}-a+\bruch{1}{2}=-a+1 [/mm]


Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]