matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1rationale Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - rationale Zahlen
rationale Zahlen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rationale Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 So 24.02.2008
Autor: freshstyle

Hallo,
ich bräuchte mal einen Tipp zu
Sei $ a, b [mm] \in \IQ$ [/mm] und es gilt $a<b$ dann gibt es eine irrationale Zahl $y$ mit $a<y<b$.
Das was ich bisher verstanden haben , ist das zwischen zwei rellen Zahlen ein rationale liegt.
Vieleicht gebt ihr mir einen Tipp zu der oben gestellten Frage.
Danke freshstayle

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
rationale Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 So 24.02.2008
Autor: steppenhahn

Ich würde mit folgenden beiden Summanden arbeiten:

Du weißt, dass a<b ist.
Das heißt, dass

a < [mm] a+\bruch{1}{k}*(b-a) [/mm] < b

ist, solange k > 1. (Denn (b-a) ist ja grade der Abstand zwischen a und b, und wenn ich weniger als den Abstand zu a addiere, ist das zwischen a und b!)

Naja, und nun muss man für k doch eigentlich nur irgendeine irrationale Zahl einsetzen! Z.B.

a < [mm] a+\bruch{1}{\wurzel{2}}*(b-a) [/mm] < b

Und die Zahl

[mm] a+\bruch{1}{\wurzel{2}}*(b-a) [/mm]

ist bestimmt irrational!

Bezug
                
Bezug
rationale Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 So 24.02.2008
Autor: freshstyle

Hallo,
eine Frage hätte ich noch , wie ich genau begründe das
$ [mm] a+\bruch{1}{\wurzel{2}}\cdot{}(b-a) [/mm] $
ein irrationale Zahl ist.
d.h. es müßte gelten
rationale + irrational = irrational
rationale * irrational = irrational
irrationale + irrational = irrational

ich weiß das [mm] $\IQ$ [/mm] bzgl der Addition abgeschlossen ist.
Danke freshstyle

Bezug
                        
Bezug
rationale Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 So 24.02.2008
Autor: Stefan_K

Hallo freshstyle,

Du kannst ja mal annehmen, dass $ [mm] a+\bruch{1}{\wurzel{2}}\cdot{}(b-a) [/mm] $ rational wäre, es also dafür eine Darstellung [mm] $\bruch{m}{n}$ [/mm] mit $ [mm] m,n\in\IZ [/mm] $ gäbe, und das zum Widerspruch damit führen, dass $ [mm] \wurzel{2} [/mm] $ irrational ist.

Viele Grüße,

StefanK


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]