matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale Funktionenquadratische gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - quadratische gleichung
quadratische gleichung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratische gleichung: Frage
Status: (Frage) beantwortet Status 
Datum: 18:43 Sa 02.04.2005
Autor: Deutschlands10

Hallo Leute!
Da ich mich lange nicht mit quadratischen Gleichungen auseinandergesetzt habe, fällt es mir dementsprechend schwer eine solche zu lösen, weshalb ich doch gerne eure Hilfe bei dieser Aufgabe in Anspruch nehmen würde.

30f-9-16f² = 0

Da die Aufgabe ja viel Ähnlichkeit mit der Normalform hat x²+px+q=0 hatte ich probiert mit +9 und dann durch -16 zu teilen dass ich
praktisch

f²+30f = 9/-16

bzw. f²+30f-9/-16 = 0
bekomme.

Dies in die die pq Formel eingesetzt bringt mich aber nicht zu einer richtigen Lösung ... weshalb ich eure Hilfe benötige.
Ich würde euch danken, wenn ihr mir sagen könntet, wie ich vorzugehen habe.

mfg
Deutschlands10






Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[Hier gibst du bitte die direkten Links zu diesen Fragen an.]
oder
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
quadratische gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Sa 02.04.2005
Autor: Sanne


> Hallo Leute!

Hallo,

>
> 30f-9-16f² = 0
>  
> Da die Aufgabe ja viel Ähnlichkeit mit der Normalform hat
> x²+px+q=0 hatte ich probiert mit +9 und dann durch -16 zu
> teilen dass ich
> praktisch
>
> f²+30f = 9/-16
>
> bzw. f²+30f-9/-16 = 0
> bekomme.

Der Weg, die Gleichung auf die Normalform zu bringen, ist richtig, also

[mm] $-16f^2+30f-9 [/mm] = 0$ |:(-16)
[mm] $f^2-\bruch{15}{8}f+\bruch{9}{16}=0$ [/mm]

Ich verstehe nicht ganz, was du gemacht hast - deine Idee war aber schon richtig, teile in solchen Fällen einfach die ganze Gleichung durch den Koeffizienten vor dem [mm] x^2, [/mm] dann hast du die Normalform, die du in die pq-Formel einsetzen kannst.

> Dies in die die pq Formel eingesetzt bringt mich aber nicht
> zu einer richtigen Lösung ... weshalb ich eure Hilfe
> benötige.

pq-Formel ist an dieser Stelle auch richtig.

[mm] $f^2-\bruch{15}{8}f+\bruch{9}{16}=0$ [/mm] einsetzen:

[mm] f_{1/2}=\bruch{15}{16}\pm\wurzel{\bruch{225}{256}-\bruch{144}{256}} [/mm]

wobei ich "q" hier direkt mit 16 erweitert habe, damit ich die Brüche verrechnen kann.

Das ganze ausrechnen, heraus kommt (gekürzt)

[mm] f_1=\bruch{3}{2} [/mm]
[mm] f_2=\bruch{3}{8} [/mm]

Du hast hier wohl aufgrund der falschen Ausgangsgleichung kein brauchbares Ergebnis bekommen.

> Ich würde euch danken, wenn ihr mir sagen könntet, wie ich
> vorzugehen habe.
>
> mfg
> Deutschlands10
>  

Hoffe alle Unklarheiten sind beseitigt, ansonsten frag einfach nach,

Gruß,
Sanne

Bezug
        
Bezug
quadratische gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 So 03.04.2005
Autor: Mary15

Du braucht nicht diese Gleichung in Normalform umformen. Es geht auch so mit Hilfe der folgenden Formel:

[mm] ax^2 [/mm] + bx + c = 0

x = [mm] \bruch{-b\pm\wurzel{b^2 - 4ac}}{2a} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]