matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10quadratische Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - quadratische Gleichungen
quadratische Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratische Gleichungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:40 Sa 09.01.2010
Autor: Vanne

Aufgabe
Bestimmen Sie die Lösungsmenge für folgende Gleichung:
-2x² + 2bx + 24b² = 0

Ich weiß nicht genau wie ich anfangen soll zu rechnen?!
Wie rechne ich das aus, wenn ich 2 Unbekannte habe?

Ich könnte erst x ausrechnen und dann b, oder?
Aber wie komme ich erstmal auf x? :-)

        
Bezug
quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Sa 09.01.2010
Autor: Stefan-auchLotti

Hi,

die Frage ist, welche Variable Lösungsvariable ist und welche ein simpler Parameter, der als Zahl angesehen wird.

In beiden Fällen musst du auf die Form [mm] $x^2+px+q=0$, [/mm] und welche Formel musst du dann anwenden??

Grüße, Stefan.

Bezug
                
Bezug
quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Sa 09.01.2010
Autor: Vanne

Das hab ich jetzt nicht ganz verstanden. Wenn b ein Parameter ist, was muss ich dann damit machen?
(Ich hab noch nie mit Parameter gerechnet?!)

Bezug
                        
Bezug
quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Sa 09.01.2010
Autor: M.Rex

Hallo

Wenn du einen Parameter (hier b) in einer Rechnung hast, berechne ganz normal (also mit bekannten Verfahren) die Werte für x ,die dann natürlich z.T. vom Parameter abhängig sind.

Hier also:

[mm] -2x^{2}+2bx+24b^{2}=0 [/mm]
[mm] \gdw x^{2}-bx-12b^{2}=0 [/mm]

Jetzt kannst du die p-q-Formel anwenden, mit p=-b und q=-12b²

Also:

[mm] x_{1;2}=-\bruch{(-b)}{2}\pm\wurzel{\bruch{(-b)^{2}}{4}-(-12b^{2})} [/mm]
[mm] =\bruch{-b}{2}\pm\wurzel{\bruch{b^{2}}{4}+12b^{2}} [/mm]
[mm] =\bruch{b}{2}\pm\wurzel{\bruch{49b^{2}}{4}} [/mm]
[mm] =\bruch{b}{2}\pm\bruch{\wurzel{49b^{2}}}{\wurzel{4}} [/mm]
[mm] =\bruch{b\pm7b}{2} [/mm]
[mm] =\ldots [/mm]

Versuch mal, die Schritte nachzuvollziehen, ich habe es sehr ausführlich gemacht. Und die letzte Strecke zur endgültigen Lösung findest du sicher selber ;-)

Marius

Bezug
                                
Bezug
quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Sa 09.01.2010
Autor: Vanne

Mein Ergebnis:
4b, -3b

Wenn ich 4b in die Gleichung für x einsetzte, dann bekomme ich raus b=0
Wenn das stimmt, dann ist die Gleichung auf beiden Seiten Null. (0=0)
Ist das richtig?

Bezug
                                        
Bezug
quadratische Gleichungen: Ausgangsgleichung
Status: (Antwort) fertig Status 
Datum: 16:14 Sa 09.01.2010
Autor: Loddar

Hallo Vanne!


> Mein Ergebnis:
>  4b, -3b

[ok]

  

> Wenn ich 4b in die Gleichung für x einsetzte, dann bekomme
> ich raus b=0

In welche Gleichung? Das verstehe ich nicht. [aeh]


> Wenn das stimmt, dann ist die Gleichung auf beiden Seiten Null. (0=0)

Wenn Du die Ausgangsgleichung meinst: [daumenhoch]


Gruß
Loddar


Bezug
                                                
Bezug
quadratische Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 Sa 09.01.2010
Autor: Vanne

Ich meinte die Ausgangsgleichung :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]