quadratische Funktional < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:53 Do 03.12.2020 | Autor: | rem |
Aufgabe | Assume the quadratic function [mm] \phi(x) [/mm] = [mm] \bruch{1}{2}x^{T}Ax [/mm] − [mm] b^{T}x, x\in\IR^{2} [/mm] with A = [mm] \pmat{2 & -1\\ -1 & 2} [/mm] and some arbitrary [mm] b\in\IR^{2}. [/mm] Determine the eigenvectors and eigenvalues of A and represent the function [mm] \phi [/mm] in the coordinates of the orthonormal basis system consisting of the normalized eigenvectors. |
Hallo,
ich habe ein Problem mit diesem Beispiel. Also der erste Teil ist mir klar, eigenwerte und eigenvektoren von A ausrechnen. Für die Eigenwerte bekomme ich [mm] \lambda_1 [/mm] = +1 und [mm] \lambda_2 [/mm] = +3 heraus. Für die zugehörigen Eigenwerte, erhalte ich dann [mm] \nu_1 [/mm] = [mm] \vektor{1 \\ 1} [/mm] sowie [mm] \nu_2 [/mm] = [mm] \vektor{-1 \\ 1}.
[/mm]
Was aber ist im zweiten Teil der Aufgabe zu tun, also "[...]represent the function [mm] \phi [/mm] in the coordinates of the orthonormal basis system consisting of the normalized eigenvectors."? Sollen hier einfach die normalisierten Eigenvektoren für x in die quadratische Formel eingesetzt werden? Ich danke euch für jede Hilfe.
LG
|
|
|
|
Hiho,
die Darstellung von [mm] \phi [/mm] hängt ja von A ab… die Darstellung von A ist aber basisabhängig.
Nun hast du mit [mm] ${v_1,v_2}$ [/mm] eine weitere Basis gegeben (die im Übrigen noch nicht normiert ist, aber schon orthogonal, warum?).
Du sollst nun A (und damit [mm] \phi) [/mm] angeben in Bezug auf eine orthonormierte Basis aus den Eigenvektoren.
Heißt:
1.) Normiere die Basis
2.) Führe eine Basistransformation für A von der alten zur neuen Basis durch.
Gruß,
Gono
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:47 So 06.12.2020 | Autor: | rem |
Danke für deine Hilfe. Also ich verstehe das jetzt so:
Wie haben ja die Matrix A = [mm] \pmat{ 2 & -1 \\ -1 & 2 }. [/mm] Diese kann ich für das lineare Glg. System auch schreiben als [mm] x_1 \vektor{2 \\ -1} [/mm] + [mm] x_2\vektor{-1 \\ 2} [/mm] = [mm] \vektor{b_1 \\ b_2}. [/mm] Nun habe ich eine neue Basis von den orthonormalen eigenvectoren erhalten: [mm] v_1 [/mm] = [mm] \vektor{1/\wurzel{2}\\ 1/\wurzel{2}} [/mm] und [mm] v_2 [/mm] = [mm] \vektor{-1/\wurzel{2}\\ 1/\wurzel{2}}. [/mm] B = [mm] \pmat{ 1/\wurzel{2} & -1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2}}
[/mm]
Nun wollen wir einen Basiswechsel der Matrix A durchführen. D.h.:
[mm] \pmat{ 2 & -1 \\ -1 & 2 } \vektor{x_1 \\ x_2} [/mm] = [mm] \pmat{ 1/\wurzel{2} & -1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2}} \underbrace{\pmat{ T_{11} & T_{12} \\ T_{12} & T_{22}}}_{T} \vektor{x_1 \\ x_2} [/mm] . Dabei ist T meine Transformationsmatrix.
Stimmt das soweit?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:36 Mo 07.12.2020 | Autor: | meili |
Hallo rem,
> Danke für deine Hilfe. Also ich verstehe das jetzt so:
> Wie haben ja die Matrix A = [mm]\pmat{ 2 & -1 \\ -1 & 2 }.[/mm]
> Diese kann ich für das lineare Glg. System auch schreiben
> als [mm]x_1 \vektor{2 \\ -1}[/mm] + [mm]x_2\vektor{-1 \\ 2}[/mm] =
> [mm]\vektor{b_1 \\ b_2}.[/mm] Nun habe ich eine neue Basis von den
> orthonormalen eigenvectoren erhalten: [mm]v_1[/mm] =
> [mm]\vektor{1/\wurzel{2}\\ 1/\wurzel{2}}[/mm] und [mm]v_2[/mm] =
> [mm]\vektor{-1/\wurzel{2}\\ 1/\wurzel{2}}.[/mm] B = [mm]\pmat{ 1/\wurzel{2} & -1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2}}[/mm]
>
> Nun wollen wir einen Basiswechsel der Matrix A
> durchführen. D.h.:
>
> [mm]\pmat{ 2 & -1 \\ -1 & 2 } \vektor{x_1 \\ x_2}[/mm] = [mm]\pmat{ 1/\wurzel{2} & -1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2}} \underbrace{\pmat{ T_{11} & T_{12} \\ T_{12} & T_{22}}}_{T} \vektor{x_1 \\ x_2}[/mm]
> . Dabei ist T meine Transformationsmatrix.
>
> Stimmt das soweit?
und
[mm]\pmat{ 1 & 0 \\ 0 & 1 } = \pmat{ 1/\wurzel{2} & -1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2}} \underbrace{\pmat{ T_{11} & T_{12} \\ T_{12} & T_{22}}}_{T} [/mm]
also
[mm]T = \pmat{ 1/\wurzel{2} & -1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2}}^{-1}[/mm]
Gruß
meili
|
|
|
|