matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnungquadr. Gleichungs-System
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - quadr. Gleichungs-System
quadr. Gleichungs-System < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadr. Gleichungs-System: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Di 05.10.2004
Autor: Aeris

Hallo.

Ich habe hier 2 Kreisgleichungen mit den Koordinaten des Schnittpunktes (x(K) und y(K)) als Unbekannte:

[mm] r(1)^{2}=(x(K)-x(M1))^{2}+(y(K)-y(M1))^{2} [/mm]
[mm] r(2)^{2}=(x(K)-x(M2))^{2}+(y(K)-y(M2))^{2} [/mm]

Die Radien bzw. Koordinaten der Kreismittelpunkte sind bekannt.
Jetzt hätte ich gerne 2 Gleichungen, mit denen ich x(K) und y(K) direkt ausrechnen kann, aber wenn ich versuche, das Gleichungssystem umzustellen, kriege ich 2-fach quadratische Lösungsansätze und komme nicht mehr weiter. Gibt es da noch einen anderen Weg als umstellen und einsetzen?
Schonmal vielen Dank für die Hilfe,
Frank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
quadr. Gleichungs-System: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Di 05.10.2004
Autor: ladislauradu

Hallo Frank!

Du kannst eine Drehung, gefolgt von einer Verschiebung (oder umgekehrt) der Koordinaten durchführen. Zum Beispiel so, dass der eine Mittelpunkt im Koordinatenursprung fällt und der andere auf der x-Achse.
Das Ganze ist trozdem ziemlich übel.

[mm] \left( \begin{matrix} x^{\prime} \\ y^{\prime} \end{matrix} \right) = \left( \begin{matrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{matrix} \right) \cdot \left( \begin{matrix} x \\ y \end{matrix} \right) + \left( \begin{matrix} a \\ b \end{matrix} \right) [/mm]

[mm]\varphi ,\ a ,\ b[/mm] müssen geignet gewählt werden. Eine allgemeine Formel die solche Aufgaben löst, kenne ich nicht.

Schöne Grüße, :-)
Ladis

Bezug
        
Bezug
quadr. Gleichungs-System: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Fr 08.10.2004
Autor: noebi

Ist zwar zu spät, aber vielleicht hilfts jemand anderen:

Im Grunde hat man das Gleichungssystem

(I)  [mm] x^2 [/mm] + [mm] y^2 [/mm] + [mm] a_1 [/mm] x + [mm] b_1 [/mm] y + [mm] c_1 [/mm] = 0
(II) [mm] x^2 [/mm] + [mm] y^2 [/mm] + [mm] a_2 [/mm] x + [mm] b_2 [/mm] y + [mm] c_2 [/mm] = 0

Man zieht dann Gleichung (II) von Gleichung (I) ab und erhält:

[mm] (a_1 [/mm] - [mm] a_2) [/mm] x + [mm] (b_1 [/mm] - [mm] b_2) [/mm] y + [mm] c_1 [/mm] - [mm] c_2 [/mm] = 0

Also: x = [mm] \bruch{(b_2 - b_1) y - c_1 + c_2}{a_1 - a_2} [/mm] (*)

Dieses x kann man dann in Gleichung (I) oder (II) einsetzen und man erhält eine quadratische Gleichung der Art:

A [mm] y^2 [/mm] + B y + C = 0

Die beiden Lösungen für y kann man schließlich in (*) einsetzen und es folgen daraus die Lösungen für x.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]