matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10quadr. Gleichung m. Parameter
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - quadr. Gleichung m. Parameter
quadr. Gleichung m. Parameter < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadr. Gleichung m. Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Di 03.10.2006
Autor: Rafnix

Aufgabe
x²+3ax+2a²=0

Hallo,
wer kann mir helfen, folgende quadrat. Gleichung zu lösen

x²+3ax+2a²=0






Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:http://www.schoolwork.de/forum/search.php?search_id=unanswered
http://www.mathe-profis.de/forum/board.php?boardid=2&sid=

        
Bezug
quadr. Gleichung m. Parameter: p/q-Formel
Status: (Antwort) fertig Status 
Datum: 16:12 Di 03.10.2006
Autor: Loddar

Hallo Rafnix,

[willkommenmr] !!


Wie hast Du denn bisher die "normalen" quadratischen Gleichungen (also ohne Parameter) gelöst?

Dafür gibt es die MBp/q-Formel ... setze hier also wie gewohnt ein:

$p \ := \ [mm] -\bruch{3a}{2}$ [/mm]   sowie   $q \ := \ [mm] 2a^2$ [/mm]


Nun musst Du zusätzlich untersuchen, für welche Werte von $a_$ die entstehende Wurzel auch wirklich definiert (sprich: nicht-negativ) ist.


Gruß
Loddar


Bezug
        
Bezug
quadr. Gleichung m. Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Di 03.10.2006
Autor: Rafnix

Vielen Dank erstmal, wenn ich das nun einsetze, komme ich auf:

- [mm] \bruch{3a}{2} \pm \wurzel{(\bruch{3a}{2})^{2}-2a } [/mm]

nachdem ich ein wenig zusammengefasst und Hauptnenner unter der Wurzel gebildet hab, komme ich auf

- [mm] \bruch{3a}{2} \pm \wurzel{\bruch{9a²-8a}{4}} [/mm]

Wie lässt sich das ganze besser/einfacher zusammenfassen??



Bezug
                
Bezug
quadr. Gleichung m. Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Di 03.10.2006
Autor: Event_Horizon

Sehr viel kannst du nicht mehr machen. Das einzige, was ich sehe, ist den Faktor 1/4 aus der Wurzel herausziehen, also  zu


  
  [mm]-\bruch{3a}{2} \pm \bruch{\wurzel{9a²-8a}}{2}[/mm]

  [mm]\bruch{-3a\pm\wurzel{9a²-8a}}{2}[/mm]

Das wars aber auch.


Bezug
                        
Bezug
quadr. Gleichung m. Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Di 03.10.2006
Autor: Rafnix

Mir hat grad jemand gesteckt, dass die Lösung L={-a; -2a} lautet. Kann das stimmen und wenn ja, wie komme ich darauf?

Bezug
                                
Bezug
quadr. Gleichung m. Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Di 03.10.2006
Autor: jasko

Also,bei einer Quadr. Gleichung in der Form:

[mm] ax^2 + bx + c = 0 [/mm]

berechnet man die Lösung mit Hilfe der Formel:

[mm] x_{1,2} = \bruch{-b \pm \wurzel{b^2 - 4ac}}{2a} [/mm]

Bei deiner Aufgabe ist also:

[mm] a = 1, b = 3a, c = 2a^2 \Rightarrow x_{1,2} = \bruch{-3a \pm \wurzel{(3a)^2 - 4*1*2a^2}}{2} = \bruch{-3a \pm \wurzel{9a^2 - 8a^2}}{2} = \bruch{-3a \pm a}{2} \Rightarrow x_1 = \bruch{-3a + a}{2} = -a, x_2 = \bruch{-3a - a}{2} = -2a [/mm]

Das sollte so jetzt richtig sein!


Bezug
                                        
Bezug
quadr. Gleichung m. Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Di 03.10.2006
Autor: Rafnix


Bezug
                                                
Bezug
quadr. Gleichung m. Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Di 03.10.2006
Autor: Mark.

deine gleichung (besser gesagt die linke hälfte) hat die form
[mm] (x+a)\cdot(x+b) = x^{2}+bx+ax+ab = x^{2}+(a+b)*x+ac[/mm]

d.h. [mm] 3a=a+b [/mm] und [mm] 2a^{2}=a*b [/mm]
daraus folgt [mm] b=2a [/mm]
[mm] \Rightarrow[/mm]  [mm] (x+a)*(x+2a)=0 [/mm]
so sollte die gleichung dann zu lösen sein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]