matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigesq-adischer Bruch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - q-adischer Bruch
q-adischer Bruch < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

q-adischer Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:53 Do 07.11.2013
Autor: kRAITOS

Sei [mm] \bruch{a}{b} [/mm] ein q-adischer Bruch mit q [mm] \in \IN [/mm] und q [mm] \ge [/mm] 2.

Wie rechne ich den Bruch von einer beliebigen Basis in eine andere Basis um?


Wäre sehr nett, wenn mir das jemand an einem Beispiel zeigen könnte, einmal für ein periodisches Ergebnis und einmal für ein nicht periodisches Ergebnis.


Vielen Dank schonmal.

        
Bezug
q-adischer Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Do 07.11.2013
Autor: reverend

Hallo kRAITOS,

Ähem.

> Sei [mm]\bruch{a}{b}[/mm] ein q-adischer Bruch mit q [mm]\in \IN[/mm] und q
> [mm]\ge[/mm] 2.

Schön. Nehmen wir das mal aus Voraussetzung. Danach folgt Deine Frage. So ist doch aber noch gar keine Aufgabe gegeben! Wir sind hier eigentlich ganz versiert im Erraten unverzichtbarer Details und haben auch schon ein paar Übungsaufgaben gesehen, aber ein bisschen doof ist es schon, sich immer erst die Aufgabe zurechtzubasteln (und das eben möglicherweise falsch) und eine Antwort zu geben, die dann evtl. vollkommen unnütz ist.
Also etwas mehr Sorgfalt, bitte.

> Wie rechne ich den Bruch von einer beliebigen Basis in eine
> andere Basis um?
>  
> Wäre sehr nett, wenn mir das jemand an einem Beispiel
> zeigen könnte, einmal für ein periodisches Ergebnis und
> einmal für ein nicht periodisches Ergebnis.

Ich mach Dir mal die Umrechnung von [mm] \tfrac{3}{5} [/mm] in einen 7-adischen Bruch vor. Das wird sicher periodisch.
Damit Du es leichter verstehst, rechne ich "links" im Dezimalsystem. Das soll man dabei aber eigentlich nicht tun.

3:5=0 Rest 3. Also erst mal eine 0 ins Ergebnis, dann ein Komma. Unser Bruch ist ja kleiner 1. Die Fortschreibung des Ergebnisses mache ich mal in blau: [mm] \blue{0,\cdots} [/mm]

Jetzt den Dividend mit q multiplizieren. Im Dezimalsystem macht man das auch, indem man eine Null anhängt. In einem beliebigen q-adischen System würde man natürlich auch nur eine Null anhängen, aber ich wollte ja dezimal rechnen.

3*7=21:5=4 Rest 1. Also [mm] \blue{0,4\cdots} [/mm]
1*7=7:5=1 Rest 2. [mm] \blue{0,41\cdots} [/mm]
2*7=14:5=2 Rest 4. [mm] \blue{0,412\cdots} [/mm]
4*5=28:5=5 Rest 3. [mm] \blue{0,4125\cdots} [/mm]
3*7=21:5=4 Rest 1. Diese Zeile sollte Dir nun bekannt vorkommen. Ab hier wird der Bruch sich also unendlich wiederholen, so dass wir jetzt sicher wissen:

[mm] \bruch{3}{5}=\blue{0,\overline{4125}_{[7]}} [/mm]

Und wann wird ein Bruch (also rationale Zahl) nichtperiodisch? Auch das ist wie im Dezimalsystem: wenn nach vollständigem Kürzen der Nenner eine beliebige Potenz von q teilt.

Probiers 7-adisch aus mit [mm] \bruch{219}{343}. [/mm]

Grüße
reverend


Bezug
                
Bezug
q-adischer Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Do 07.11.2013
Autor: kRAITOS

Das ist ja dann wirklich nicht so schwer. Danke.

Aber in welcher Basis ist [mm] \bruch{3}{5}? [/mm] Oder ist das Irrelevant?

Du meintest: "Damit Du es leichter verstehst, rechne ich "links" im Dezimalsystem. Das soll man dabei aber eigentlich nicht tun."
Was soll man denn dann tun?




Zu deiner Aufgabe:

[mm] \bruch{219}{343} [/mm] = [mm] x_7 [/mm]

219:343  = 0:343     = 0 R219
219*7    = 1533:343  = 4 R161
161*7    = 1127:343  = 3 R98
98*7     = 686:343   = 2 R0

x= 0,432

Bezug
                        
Bezug
q-adischer Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Do 07.11.2013
Autor: reverend

Hallo nochmal,

> Das ist ja dann wirklich nicht so schwer. Danke.
>  
> Aber in welcher Basis ist [mm]\bruch{3}{5}?[/mm] Oder ist das
> Irrelevant?

Die Basis sollte [mm] \ge{6} [/mm] sein, weil es sonst keine 5 gibt. Aber ob sie nun 7, 13, 1433 oder sonstwas ist, ist egal.

> Du meintest: "Damit Du es leichter verstehst, rechne ich
> "links" im Dezimalsystem. Das soll man dabei aber
> eigentlich nicht tun."
>  Was soll man denn dann tun?

q-adisch rechnen.

> Zu deiner Aufgabe:
>  
> [mm]\bruch{219}{343}[/mm] = [mm]x_7[/mm]
>  
> 219:343  = 0:343     = 0 R219
>  219*7    = 1533:343  = 4 R161
>  161*7    = 1127:343  = 3 R98
>  98*7     = 686:343   = 2 R0
>  
> x= 0,432

Ja, super.
Ich glaube, Du kannst Dir das nächste Thema vornehmen. ;-)

Grüße
reverend

Bezug
                                
Bezug
q-adischer Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:34 Do 07.11.2013
Autor: kRAITOS

Also rechnet man quasi einen beliebigen Bruch um in eine vorgegebene Basis aber dabei ist die Basis, in die der Bruch sich befindet eigentlich ohne Belang?


Ja, ein paar Themen habe ich noch. Danke für deine Hilfe. :)

Bezug
                                        
Bezug
q-adischer Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Do 07.11.2013
Autor: reverend

Hallo,

> Also rechnet man quasi einen beliebigen Bruch um in eine
> vorgegebene Basis aber dabei ist die Basis, in die der
> Bruch sich befindet eigentlich ohne Belang?

Ja, das kann man so sagen.

> Ja, ein paar Themen habe ich noch. Danke für deine Hilfe.
> :)

Na dann viel Erfolg!
reverend

Bezug
                                                
Bezug
q-adischer Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:41 Do 07.11.2013
Autor: kRAITOS

Eine Frage habe ich noch. Sorry.

Wenn ich überprüfen möchte, ob ich richtig umgerechnet habe, wie mache ich das?

Bezug
                                                        
Bezug
q-adischer Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Do 07.11.2013
Autor: reverend

Hallo,

> Eine Frage habe ich noch. Sorry.
>  
> Wenn ich überprüfen möchte, ob ich richtig umgerechnet
> habe, wie mache ich das?

Hm. Da sehe ich keine Möglichkeit außer Nachrechnen. Es gibt also keine richtige Probe.

Bei dem Beispiel von vorhin könntest Du aber mit 5 multiplizieren, dann sollte halt 3 rauskommen. Aber ob das einfacher ist als jeden Rechenschritt zu überprüfen?

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]