matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseproduktformel finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Induktionsbeweise" - produktformel finden
produktformel finden < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

produktformel finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 So 31.10.2010
Autor: willnedmussaber

Aufgabe
Finden sie durch Probieren eine Formel für das Produkt und beweisen sie diese anschließend mit vollständiger Induktion


n
∏     k²/(k²-1) n≥2
k=2

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


Kann mir bitte jemand bei der Lsg. der Aufgabe helfen, habe einfach keine Ideen mehr und schon Kopfschmerzen!!!

Vielen lieben Dank im Voraus

willnedmussaber

        
Bezug
produktformel finden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 So 31.10.2010
Autor: Sax

Hi,

berechne doch mal die ersten fünf bis sieben Produkte (geht auch mit Kopfschmerzen), erweitere die Brüche für ungerades n mit 2.

Gruß Sax.

Bezug
                
Bezug
produktformel finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 So 31.10.2010
Autor: willnedmussaber

Ich habe die produkte ausformuliert  bis n = 7, was hilft mir die erweiterung mit 2?

Ist die gesucht formel evtl. (k²/(k²-1)) ^n , aber zu banal oder?
Und wie führe ich dann den beweis durch?

Vielen Dank für deine/ eure Zeit und ich hoffe ich stelle mich nicht zu dämlich!!!

Bezug
                        
Bezug
produktformel finden: rechnen!
Status: (Antwort) fertig Status 
Datum: 20:58 So 31.10.2010
Autor: Loddar

Hallo willnedmussaber,

[willkommenmr] !!


Lass Dir doch nicht alles aus der Nase ziehen. Wie lauten denn die ersten Glieder, um daraus dann eine Formel erkennen zu können?

[mm]n = 2: \ \ \ \produkt_{k=2}^{2}\bruch{k^2}{k^2-1} \ = \ \bruch{2^2}{2^2-1} \ = \ ...[/mm]

[mm]n = 3: \ \ \ \produkt_{k=2}^{3}\bruch{k^2}{k^2-1} \ = \ \produkt_{k=2}^{2}\bruch{k^2}{k^2-1}*\bruch{3^2}{3^2-1} \ = \ ...[/mm]


Gruß
Loddar



Bezug
        
Bezug
produktformel finden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 So 31.10.2010
Autor: ullim

Hi,

versuchs mal mit [mm] \bruch{2n}{n+1} [/mm]

Bezug
                
Bezug
produktformel finden: noch nicht verraten!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:48 So 31.10.2010
Autor: Loddar

.


> versuchs mal mit [mm]\bruch{2n}{n+1}[/mm]  

Petze! ;-)


Gruß
Loddar



Bezug
                        
Bezug
produktformel finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Mo 01.11.2010
Autor: willnedmussaber

So,

ein neuer Tag, neues Glück!

vielen Dank... okay

im Nachhinein schauen die Sachen irgendwie immer sehr einfach aus.....!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]