prinzpale Hüllenabbildung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:15 Fr 24.11.2006 | Autor: | Franzie |
Aufgabe | Zeigen Sie, dass [mm] \gamma [/mm] genau dann eine prinzipale Hüllenabbildung auf M ist, wenn für alle t, x, y [mm] \in [/mm] M zum einen t [mm] \in [/mm] gilt.
Zeigen Sie, dass [mm] fü\gamma [/mm] (x), x [mm] \in \gamma [/mm] (y) [mm] \to \gamma [/mm] (t) [mm] \in \gamma [/mm] (y) r eine beliebige prinzipale Hüllenabbildung [mm] \gamma [/mm] auf M und jedes x [mm] \in [/mm] M das Mengensystem [mm] \left\{\gamma*t | t \in \gamma(x) \right\} [/mm] eine Partitionierung von gamma(x) ist. |
Hallöchen Leute!
hab ein Problem bei der obigen Aufgabe. Den ersten Teil hab ich schon soweit gelöst, aber bei dem Teil mit der Partitionierung hängt's bei mir. Ich weiß zwar, welche Merkmale eine Partition hat, aber nicht, wie ich das auf die obige Aufgabe transformieren soll.
Also, es wäre zu zeigen:
Ein Mengensystem X [mm] \subseteq 2^A [/mm] ist eine Partition von A, wenn gilt:
1. Y [mm] \ne \emptyset [/mm] für alle Y [mm] \in [/mm] X
2. Y [mm] \cap [/mm] Z = [mm] \emptyset [/mm] für alle Y,Z [mm] \in [/mm] X, Y [mm] \ne [/mm] Z
3. [mm] \cap [/mm] X=A
Aber wie wende ich das jetzt auf die Hüllenabbildung an? Könnt ihr mir vielleicht einen Tipp geben?
liebe Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:19 So 26.11.2006 | Autor: | Mr_ED |
Hallo!
Du musst folgendes zeigen:
- [mm] \gamma^\ast t\not=\emptyset [/mm] für alle [mm] t\in\gamma(x)
[/mm]
- [mm] \gamma^\ast s\cap\gamma^\ast t=\emptyset [/mm] für alle [mm] s,t\in\gamma(x) [/mm] mit [mm]\gamma^\ast s\not=\gamma^\ast t[/mm]
- [mm] \bigcup_{t\in\gamma x}\gamma^\ast t=\gamma(x)
[/mm]
Das sollte recht einfach gehen.
|
|
|
|