matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1primitiv rekursive Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - primitiv rekursive Funktion
primitiv rekursive Funktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

primitiv rekursive Funktion: Tipp,Idee
Status: (Frage) überfällig Status 
Datum: 12:11 Mo 17.12.2018
Autor: djanselo

Aufgabe
Zeigen Sie,dass die folgende Funktionen primitiv rekursiv sind. Verwenden Sie dazu die Definition von primitiv rekursiven Funktionen, und bauen Sie die Funktion aus konstanten Funktionen,Projektionen und Nachfolgerfunktion durch Komposition und primitive Rekursion zusammen.Sie dürfen die Funktionen aus der Gruppenaufgabe und add,mult,pred,sub aus der Vl verwenden.
Aufgabe a) [mm] $f_{5}(x,y)= [/mm] x$  mod $y$
        b) [mm] $f_{6}(x,y)= [/mm] ggt(x,y)$

Funktionen aus der Gruppenaufgabe  sind :

[mm] 1.)$f:\mathbb [/mm] N [mm] \to \mathbb [/mm] N$  mit $ f(x)=2x+1$

[mm] 2.)$sgn:\mathbb [/mm] N [mm] \to \mathbb [/mm] N$ mit [mm] $sign=[x\geq [/mm] 1]$

[mm] 3.)$leq:\mathbb N^{2} \to \mathbb [/mm] N $ mit [mm] $leq(a,b)=[a\leq [/mm] b]$

[mm] 4.)$g:\mathbb N^{2} \to \mathbb [/mm] N$ mit $g(x,y)=x $ DIV $y $

Meine Lösung:

Aufgabe a) [mm] $f_{5}(x,y)= [/mm] x$ mod $y$ ist primitive rekursive,da man sie durch eine Komposition darstellen kann

[mm] Komposition:$f_{5}(x,y)=sub(x,mult(g(x,y),y))$ [/mm]
Dabei habe ich sub,mult aus der Vorlesung verwendet und die funktion $g(x,y)$  aus den Gruppenaufgaben

Aufgabe b)

ich weis,dass man den $ggt(a,b)$ als [$4$Fälle darstellen kann

1. Fall  $ggt(a,0)= a$

2.Fall  $ggt(0,b)=b$

3.Fall $a<b$

$ggt(a,b-a)$

4.Fall $a>b$
vertausche $a $ und $b $das heißt $gt(b,a)$

Ansatz für primtive rekursive funktionen:
für [mm] $f_{6}(x,y)$ [/mm] brauchen wir eine 1-stellige Funktion [mm] $h:\mathbb [/mm] N [mm] \to \mathbb [/mm] N$  mit $h(x,0)=x$und eine 3-stellige Funktion [mm] $j:\mathbb N^{3} \to \mathbb [/mm] N $ mit  $j(x,,y,z)=????????$bei der Funktion j komm ich nicht weiter

Habt ihr ideen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
primitiv rekursive Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 19.12.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]