primideale < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 12:40 Sa 17.05.2008 | Autor: | koi |
Aufgabe | Zeigen Sie, dass die Ideale [mm] (2,1+\wurzel{-5}) [/mm] , (3, [mm] 1+\wurzel{-5}) [/mm] und (3, [mm] 1-\wurzel{-5}) [/mm] Primidelae in [mm] O_{k} [/mm] = [mm] \IZ [\wurzel{-5}] [/mm] sind. |
hey!
ich komme bei der aufgabe oben irgendwie nicht so recht voran.
meine überlegungen zum ersten ideal sind folgende:
in einer vorangehenden aufgabe habe ich folgende identität gezeigt:
(2) = [mm] (2,1+\wurzel{-5})²
[/mm]
so, jetzt weiß ich, dass [mm] \IZ [\wurzel{-5}]/(2) [/mm] 4 elemente besitzt. mit I = { [mm] a+b\wurzel{-5} [/mm] |a,b [mm] \in \IZ [/mm] } sind das folgende:
a,b ungerade
a,b gerade
a ungerade, b gerade
a gerade. b ungerade
das heisst, die ordnung von [mm] \IZ [\wurzel{-5}]/ (2,1+\wurzel{-5}) [/mm] muss nach der vorher gezeigten identität ein teiler von 4 sein.
kann man hier dann schon schliessen, dass die ordnung 2 sein muss, da sonst ein triviales ideal vorliegt?
dann würde ich weiter schliessen, dass primideale, die (2) umfassen auf primideale in dem ring [mm] \IZ [\wurzel{-5}]/(2) [/mm] abgebildet werden und das einzige nicht triviale ideal im kleineren ring ist [mm] (1+\wurzel{-5}), [/mm] darum ist es maximal, also auch sein urbild [mm] (2,1+\wurzel{-5}) [/mm] im großen ring
mmh.. wie ihr seht, am ende etwas schwammig.
bin für tipps sehr dankbar
grüße
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Mo 19.05.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|