matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperprim, integer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - prim, integer
prim, integer < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

prim, integer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Do 05.11.2009
Autor: moerni

Hallo.
In der Vorlesung hatten wir folgende Definition: Ein Ideal I von A heißt prim (oder Primideal), wenn A/I ein integrer Ring ist.
Meine Frage: gilt auch die Rückrichtung? Also gilt: wenn ein Ideal I von A ein Primideal ist, dann ist A/I ein integrer Ring?
grüße, moerni

        
Bezug
prim, integer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Do 05.11.2009
Autor: moerni

und noch eine Frage: Wir haben definiert: Sei A ein integrer Ring, a [mm] \not \in [/mm] A^*. Ein a [mm] \in [/mm] A heißt prim oder Primelement von A, falls das Hauptideal (a) ein Primideal von A ist. Gilt auch folgendes: p ist ein Primelement in A, dann ist (p) ein Primideal?


Bezug
                
Bezug
prim, integer: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 Fr 06.11.2009
Autor: felixf

Hallo!

> und noch eine Frage: Wir haben definiert: Sei A ein
> integrer Ring, a [mm]\not \in[/mm] A^*. Ein a [mm]\in[/mm] A heißt prim oder
> Primelement von A, falls das Hauptideal (a) ein Primideal
> von A ist.

[ok]

> Gilt auch folgendes: p ist ein Primelement in A,
> dann ist (p) ein Primideal?

Ja. Lies dir mal den Satz davor durch, da steht es doch :)

LG Felix


Bezug
        
Bezug
prim, integer: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Do 05.11.2009
Autor: schachuzipus

Hallo moerni,

> Hallo.
> In der Vorlesung hatten wir folgende Definition: Ein Ideal
> I von A heißt prim (oder Primideal), wenn A/I ein integrer
> Ring ist.
>  Meine Frage: gilt auch die Rückrichtung? Also gilt: wenn
> ein Ideal I von A ein Primideal ist, dann ist A/I ein
> integrer Ring?

Ja, das ist eine Äquivalenz!

[mm] $I\subset [/mm] A$ ist Primideal [mm] $\gdw [/mm] A/I$ ist Integritätsring

>  grüße, moerni


LG

schachuzipus

Bezug
        
Bezug
prim, integer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Do 05.11.2009
Autor: moerni

Danke!
Noch eine Frage: Sei A ein Ring, S eine multiplikative Teilmenge, p ein Primelement, und [mm] I_S:=\{\frac{p}{s}: p \in (p), s \in S\} [/mm] ein Primideal. Ist dann [mm] (\frac{p}{1}) [/mm] auch ein Primideal von [mm] A_S? [/mm]

Bezug
                
Bezug
prim, integer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 Do 05.11.2009
Autor: moerni

noch eine Frage:
sei A[x] nullteilerfrei. Gilt dann, dass A auch nullteilerfrei ist?

Bezug
                        
Bezug
prim, integer: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 Fr 06.11.2009
Autor: felixf

Hallo!

> noch eine Frage:
>  sei A[x] nullteilerfrei. Gilt dann, dass A auch
> nullteilerfrei ist?

Ja.

LG Felix


Bezug
                
Bezug
prim, integer: Antwort
Status: (Antwort) fertig Status 
Datum: 10:16 Fr 06.11.2009
Autor: felixf

Hallo!

> Danke!
>  Noch eine Frage: Sei A ein Ring, S eine multiplikative
> Teilmenge, p ein Primelement, und [mm]I_S:=\{\frac{p}{s}: p \in (p), s \in S\}[/mm]
> ein Primideal. Ist dann [mm](\frac{p}{1})[/mm] auch ein Primideal
> von [mm]A_S?[/mm]  

Es gilt doch [mm] $I_S [/mm] = [mm] (\frac{p}{1})$: [/mm] damit ist die Antwort "ja".

(Versuch doch mal zu zeigen: fuer ein beliebiges Element $f [mm] \in [/mm] A$ und eine multiplikative Teilmenge $S [mm] \subseteq [/mm] A$ gilt [mm] $(f)_S [/mm] = [mm] (\frac{f}{1})$ [/mm] in [mm] $A_S$; [/mm] hier ist [mm] $(f)_S [/mm] = [mm] \{ \frac{a}{s} \mid a \in (f), s \in S \}$.) [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]