matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysispotenzreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - potenzreihen
potenzreihen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 Di 02.03.2010
Autor: mathestudent25

Aufgabe
Man bestimme EINE reguläre Lösung der Differentialgleichung
x(1-x)y''-3xy'-y=0
in Form einer Potenzreihe um [mm] x_0=0. [/mm] Man ermittle anschließend die Summe dieser Reihe.

Hallo alle miteinander,

dieses beispiel bereitet mir seit ca zwei wochen schon kopfzerbrechen, ich bin total am boden zerstört.
das problem dabei ist dass es sich glaube ich um schwach singuläre stellen bei [mm] x_0=0 [/mm] handelt.
ich habs mit der frobeniusmethode probiert, doch ich komme leider nicht weiter als bis zur indexgleichung.

ich bitte wirklich um jede hilfe!
würd mich echt freuen wenn jemand es schaffen würde, ich glaube es ist ein ziehmlicher brocken.

danke leute,
lg

        
Bezug
potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:19 Mi 03.03.2010
Autor: rainerS

Hallo!

> Man bestimme EINE reguläre Lösung der
> Differentialgleichung
>  x(1-x)y''-3xy'-y=0
>  in Form einer Potenzreihe um [mm]x_0=0.[/mm] Man ermittle
> anschließend die Summe dieser Reihe.
>  Hallo alle miteinander,
>  
> dieses beispiel bereitet mir seit ca zwei wochen schon
> kopfzerbrechen, ich bin total am boden zerstört.
>  das problem dabei ist dass es sich glaube ich um schwach
> singuläre stellen bei [mm]x_0=0[/mm] handelt.
>  ich habs mit der frobeniusmethode probiert, doch ich komme
> leider nicht weiter als bis zur indexgleichung.
>  
> ich bitte wirklich um jede hilfe!
>  würd mich echt freuen wenn jemand es schaffen würde, ich
> glaube es ist ein ziehmlicher brocken.

Nein, das geht ganz einfach. Setze

  [mm]y(x) = \summe_{k=0}^{\infty} a_kx^k [/mm]

in die DGL ein und sortiere nach Potenzen von x, dann kommst du ziemlich schnell auf eine einfache Rekursionsformel für die Koeeffizienten [mm] $a_k$, [/mm] aus der du die explizite Darstellung der [mm] $a_k$ [/mm] ausrechnest.

Poste mal, was du bisher gerechnet hast, damit wir dir helfen können.

Viele Grüße
   Rainer

Bezug
                
Bezug
potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 So 07.03.2010
Autor: mathestudent25

ja aber das darf ich doch nicht machen, wegen der singularität eben, oder???

Bezug
                        
Bezug
potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 So 07.03.2010
Autor: MathePower

Hallo mathestudent25,

> ja aber das darf ich doch nicht machen, wegen der
> singularität eben, oder???


Sicher darfst Du das machen, steht sogar in der Aufgabe.


Gruss
MathePower

Bezug
                                
Bezug
potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 So 07.03.2010
Autor: mathestudent25

aber dann verstehe ich das nicht ... da ist es doch schwach singulär und ich soll da entwickeln ... gibts nicht grad dafür die frobeniusmethode?

Bezug
                                        
Bezug
potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:20 Mo 08.03.2010
Autor: Gonozal_IX

Hiho,

du ignorierst gerade gekonnt die Tipps, die man dir gibt.

Du solltest vielleicht einfach mal das machen, was man dir empfielt (zumal es auch so in der Aufgabe steht).

Und ja, in der Aufgabe steht: Wähle dazu eine Potenzreihe um 0.
Welche Form hat denn eine Potenzreihe um Null (du wirst feststellen, dass sie "kurioserweise" so aussieht wie die Funktion im Tipp der ersten Antwort......)

MFG,
Gono.

Bezug
                                                
Bezug
potenzreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 Di 16.03.2010
Autor: mathestudent25

ja, habs dann damals auch geschafft ... danke an alle!

Bezug
                                
Bezug
potenzreihen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:51 So 07.03.2010
Autor: mathestudent25

also ich denk man sollte grad deshalb den modifizierten ansatz wählen?

kennt sich hier wer aus? ich brauch das morgen schon

vielen dank!

Bezug
                                        
Bezug
potenzreihen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Di 09.03.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]