matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenpotenzreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - potenzreihen
potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:59 Mi 31.05.2006
Autor: mycha153

Aufgabe
Wir betrachten die Potenzreihe f(z) = [mm] \summe_{n=1}^{ \infty}c_{n} z^{n} [/mm]  mit reellen oder komplexen
Koeffizienten [mm] c_{n} [/mm] und Konvergenzradius R. Zeige
R = [mm] (\limes sup_{n\rightarrow\infty} \wurzel[n]{|c_{n}|})^{-1} [/mm]  

(Tip: Formuliere das Wurzelkriterium mithilfe das Limes Superior.)

hätte jemand von euch einenn ansatz und einen guten tipp für mich??????????????


Bitte!!!!!!!!!

        
Bezug
potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 Mi 31.05.2006
Autor: felixf

Hallo!

> Wir betrachten die Potenzreihe f(z) = [mm]\summe_{n=1}^{ \infty}c_{n} z^{n}[/mm]
>  mit reellen oder komplexen
>  Koeffizienten [mm]c_{n}[/mm] und Konvergenzradius R. Zeige
>  R = [mm](\limes sup_{n\rightarrow\infty} \wurzel[n]{|c_{n}|})^{-1}[/mm]
>  
>
> (Tip: Formuliere das Wurzelkriterium mithilfe das Limes
> Superior.)
>  hätte jemand von euch einenn ansatz und einen guten tipp
> für mich??????????????
>  
>
> Bitte!!!!!!!!!

Genau die Frage hatten wir letztens schonmal. Eine Suche nach Konvergenzradius bewirkt Wunder...

LG Felix



Bezug
                
Bezug
potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Mi 31.05.2006
Autor: mycha153

ja nur hab ich leider immer noch nicht so ganz verstanden wie man dannach sucht. irgendwie stelle ich mich total dumm an was das thema angeht!

Bezug
                        
Bezug
potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Mi 31.05.2006
Autor: felixf

Hallo!

> ja nur hab ich leider immer noch nicht so ganz verstanden
> wie man dannach sucht. irgendwie stelle ich mich total dumm
> an was das thema angeht!

Rechts oben auf dieser Seite findest du eine Eingabebox, und rechts von dieser ist ein Button ``Suchen''. Du tippst also ``Konvergenzradius'' in diese Eingabebox ein und klickst auf ``Suchen''. Und dann schaust du dir die Ergebnisse an und findest den passenden Beitrag. (Momentan ist er noch auf der ersten Seite mit Suchergebnissen...)

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]