matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10potenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - potenzen
potenzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 So 25.11.2007
Autor: bb83

Hallo,ich hab folgende Frage zu dieser aufgabe:

(1,44*10^22):1,2+88*10^21

Ich hab es folgendermaßen gerechnet erst die klammer ausrechen,dann 88*10^21(punkt vor strich)+1,2
Die Lösung ist aber anders:
1,44^22:89,2^21=3,35^-38
Ich verstehe nur nicht wie man auf die 89,2^21 gekommen ist?

        
Bezug
potenzen: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:50 So 25.11.2007
Autor: kirstenS

Hallo,

versuch doch mal die Formel ordentlich zu editieren, denn Du rechnest schließlich +1,2, obwohl da   / 1.2 steht. Wie sieht die Aufgabe denn nun aus?

kirstenS

Bezug
                
Bezug
potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 So 25.11.2007
Autor: bb83

(1,44*10^22):1,2+88*10^21  so sieht die Aufgabe aus.
Das Ergebniss ist 1,44^22:89,2^21=3,35^-38

Ich verstehe nur nicht wie man auf die 89,2^21 kommt.

Bezug
        
Bezug
potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 So 25.11.2007
Autor: leduart

Hallo
> Hallo,ich hab folgende Frage zu dieser aufgabe:
>  
> (1,44*10^22):1,2+88*10^21
>  
> Ich hab es folgendermaßen gerechnet erst die klammer
> ausrechen,dann 88*10^21(punkt vor strich)+1,2
>  Die Lösung ist aber anders:
>  1,44^22:89,2^21=3,35^-38
>  Ich verstehe nur nicht wie man auf die 89,2^21 gekommen
> ist?

Das kann nur sein, wenn irgendwo ne Klammer vergessen wurde.
also heisst die Aufgabe wohl eigentlich:
(1,44*10^22):((1,2+88)*10^21oder
˜bruch{1,44*10^22}{(1,2+88)*10^21}
So wie dus aufgeschrieben hast ohne irgendwelche Klammern ist das völlig unklar.
Gruss leduart

Bezug
                
Bezug
potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 Di 04.12.2007
Autor: bb83

Ich hätte eine Frage zur folgenden Aufgabe:
(x^2y-xy^-^1)*x^-^1y
Die Korrekte Lösung hab ich auch parrat:
[mm] xy^2^-1 [/mm]

Ich verstehe nicht wieso wie man auf die -1 kommt?
Kann mir jemand auf die Sprünge helfen?


Bezug
                        
Bezug
potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Di 04.12.2007
Autor: schachuzipus

Hallo bb83,

du musst nur die Klammer mal ausmultiplizieren, das Kommutativgesetz für die Multiplikation und ein Potenzgesetz anwenden ;-)

[mm] $(x^2y-xy^{-1})\cdot{}(x^{-1}y)$ [/mm]

[mm] $=x^2yx^{-1}y-xy^{-1}x^{-1}y$ [/mm]

[mm] $=(x^2x^{-1})(yy)-(xx^{-1})(y^{-1}y)$ [/mm]

[mm] $=(x^2x^{-1})(y^1y^1)-(x^1x^{-1})(y^{-1}y^1)$ [/mm]

[mm] $=x^{2-1}y^{1+1}-x^{1-1}y^{1-1}=...$ [/mm]


LG


schachuzipus

Bezug
                                
Bezug
potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Di 04.12.2007
Autor: bb83

Danke für deine mühe,ich versteh auch alles so wie du es aufgeschrieben hast,nur wieso -1 ich versteh es nicht,nach deiner rechnung [mm] x^1^-^1 y^1^-^1 [/mm]

müsste doch auch das y weg fallen das x ist ja schließlich auch weg gefallen also wie kommt man da auf die -1

das ergebniss müsste doch eigentlich [mm] xy^2 [/mm] heißen.

Bezug
                                        
Bezug
potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Di 04.12.2007
Autor: Blech


> Danke für deine mühe,ich versteh auch alles so wie du es
> aufgeschrieben hast,nur wieso -1 ich versteh es nicht,nach
> deiner rechnung [mm]x^1^-^1 y^1^-^1[/mm]

[mm] $x^{1-1}y^{1-1}=x^0y^0=1*1=1$ [/mm]


Bezug
                                                
Bezug
potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 Di 04.12.2007
Autor: bb83

Ich danke dir,ich hatte komplett vergeßen dass bei den potenzen alles hoch ^0=1 ist jetzt ergibt es natürlich sinn.

Bezug
                                                        
Bezug
potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Di 04.12.2007
Autor: Blech

Das kannst Du Dir daran verdeutlichen, daß [mm] $x^0*x^1=x^{0+1}=x^1=x$, [/mm] d.h. [mm] $x^0*x [/mm] = x$, damit muß [mm] $x^0=1$ [/mm] sein, und es kann nicht [mm] $x^0=0$ [/mm] gelten.
(wäre sonst eigentlich praktisch, das ginge für alles: [mm] $1=1^1= 1^{1+0}=1^1*1^0=1*0=0$ [/mm] =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]